\(\dfrac{a}{b}\) ( a;b\(\in Z\);b
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

a)

Khi a, b cùng dấu:

\(\Rightarrow\dfrac{a}{b}\ge0\) (Luôn luôn nhận giá trị không âm)

b)

Khi a, b khác dấu:

\(\Rightarrow\dfrac{a}{b}< 0\) (Luôn luôn nhận giá trị âm)

P/s: Đề phải là thế này nhé:

Cho số hữu tỉ abab ( a;bZ∈Z;b0≠0).

So sánh ababvới 0 khi

a) a, b cùng dấu.

b) a, b khác dấu.

Chúc bạn học tốt!ok

a ) khi a , b cùng dấu thì :

\(\dfrac{a}{b}\) \(\ge\) 0 ( vì luôn nhận giá trị dương hoặc = 0 )

b ) khi a , b khác dấu thì :

\(\dfrac{a}{b}\) \(\le\) 0 ( vì luôn nhận giá trị âm hoặc = 0 )

a: -1/200<0<1/2000

b: \(\dfrac{-11}{56}=\dfrac{-275}{56\cdot25}=\dfrac{-275}{1400}\)

\(\dfrac{-25}{124}=\dfrac{-275}{124\cdot11}=\dfrac{-275}{1364}\)

mà 1400>1364

nên \(\dfrac{-11}{56}>-\dfrac{25}{124}\)

23 tháng 8 2017

1. Câu hỏi của Cuber Việt ( Câu b í -.- )

2. Quy đồng mẫu số:

\(\dfrac{a}{b}=\dfrac{a.\left(b+2018\right)}{b.\left(b+2018\right)}=\dfrac{ab+2018a}{b.\left(b+2018\right)}\)

\(\dfrac{a+2018}{b+2018}=\dfrac{\left(a+2018\right).b}{\left(b+2018\right).b}=\dfrac{ab+2018b}{b.\left(b+2018\right)}\)

\(b>0\) \(\Rightarrow\) Mẫu 2 phân số ở trên dương.

So sánh \(ab+2018a\)\(ab+2018b\):

. Nếu \(a< b\Rightarrow\) Tử số phân số thứ 1 < Tử số phân số thứ 2.

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)

. Nếu \(a=b\) \(\Rightarrow\) Hai phân số bằng 1.

. Nếu \(a>b\Rightarrow\) Tử số phân số thứ 1 > Tử số phân số thứ 2.

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)

3. \(\dfrac{x}{6}-\dfrac{1}{y}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{y}=\dfrac{x}{6}-\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{y}=\dfrac{x-3}{6}\)

\(\Rightarrow y.\left(x-3\right)=6\)

Ta có: \(6=1.6=2.3=(-1).(-6)=(-2).(-3)\)

Tự lập bảng ...

Vậy ta có những cặp x,y thỏa mãn là:

\(\left(1,7\right);\left(6,2\right);\left(2,4\right);\left(3,3\right);\left(-1,-5\right);\left(-6,0\right);\left(-2,-2\right);\left(-3,-1\right)\)

23 tháng 8 2017

\(\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{a\left(b+2018\right)}{b\left(b+2018\right)}\\\dfrac{a+2018}{b+2018}=\dfrac{b\left(a+2018\right)}{b\left(b+2018\right)}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{ab+2018a}{b^2+2018b}\\\dfrac{a+2018}{b+2018}=\dfrac{ab+2018b}{b^2+2018b}\end{matrix}\right.\)

Cần so sánh:

\(ab+2018a\) với \(ab+2018b\)

Cần so sánh \(2018a\) với \(2018b\)

Cần so sánh \(a\) với \(b\)

\(a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+2018}{b+2018}\)

\(a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)

\(a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+2018}{b+2018}\)

14 tháng 7 2017

Bài 2:

a)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)

=> a = b = c

b)

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)

=> x = y = z (theo a)

Thay x = y = z vào biểu thức, ta có:

\(M=\dfrac{x^{333}.x^{666}}{x^{999}}=1\)

c)

\(ac=b^2\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)

\(ab=c^2\Rightarrow\dfrac{b}{c}=\dfrac{c}{a}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Rightarrow a=b=c\)

Thay a = b = c vào biểu thức, ta có:

\(M=\dfrac{a^{333}}{a^{111}.a^{222}}=1\)

14 tháng 7 2017

Thanks bạn, mà bạn làm đc bài 1 không?

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)

\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)

Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.

3 tháng 8 2017

Từ \(a\left(y+z\right)=b\left(z+x\right)\), áp dụng t/c dãy tỉ số bằng nhau ta được

\(\dfrac{z+x}{a}=\dfrac{y+z}{b}=\dfrac{z+x-y-z}{a-b}=\dfrac{x-y}{a-b}\)

\(\Rightarrow\dfrac{z+x}{a}.\dfrac{1}{c}=\dfrac{y+z}{b}.\dfrac{1}{c}=\dfrac{x-y}{c\left(a-b\right)}\)(1)

Tương tự : từ \(b\left(z+x\right)=c\left(x+y\right)\)

\(\Rightarrow\dfrac{z+x}{c}=\dfrac{x+y}{b}=\dfrac{z+x-x-y}{c-b}=\dfrac{y-z}{c-b}\)\(\Rightarrow\dfrac{z+x}{c}.\dfrac{1}{a}=\dfrac{x+y}{b}.\dfrac{1}{a}=\dfrac{y-z}{c-b}.\dfrac{1}{a}\)

\(\Rightarrow\dfrac{z+x}{ac}=\dfrac{x+y}{ab}=\dfrac{y-z}{a\left(c-b\right)}\)(2)

từ \(a\left(y+z\right)=c\left(x+y\right)\)

\(\Rightarrow\dfrac{y+z}{c}=\dfrac{x+y}{a}=\dfrac{y+z-x-y}{c-a}=\dfrac{z-x}{c-a}\)\(\Rightarrow\dfrac{y+z}{c}.\dfrac{1}{b}=\dfrac{x+y}{a}.\dfrac{1}{b}=\dfrac{z-x}{c-a}.\dfrac{1}{b}\)

\(\Rightarrow\dfrac{y+z}{bc}=\dfrac{x+y}{ab}=\dfrac{z-x}{b\left(c-a\right)}\)(3)

Kết hợi (1);(2)(3) => ĐPCM

tik mik nha !!!

3 tháng 8 2017

Câu 2 mình đã làm ở đây: Câu hỏi của Huyền Trang Tiến Tài

12 tháng 7 2017

BÀI 1:

\(\dfrac{a}{k}=\dfrac{x}{a}\Rightarrow a^2=kx\)

\(\dfrac{b}{k}=\dfrac{y}{b}\Rightarrow b^2\)=ky

Vay \(\dfrac{a^2}{b^2}=\dfrac{kx}{ky}=\dfrac{x}{y}\)

12 tháng 7 2017

Bài 2:

Vì a=b+c nên ad=(b+c)d=bd+cd (1)

Vi c=\(\dfrac{bd}{b-d}\)nen \(bd=\)c.(b-d)=bc-cd hay bc=bd+cd (2)

Từ (1),(2) =>ad=bc=>\(\dfrac{a}{b}=\dfrac{c}{d}\)

7 tháng 10 2017

b) Ta có: [tex]\frac{a^{2} + c^{2}}{b^{2} + a^{2}}[/tex]= [tex]\frac{bc + c^{2}}{b^{2} + bc}= \frac{c(b +c)}{b(b + c)}= \frac{c}{b}[/tex] (đpcm)

8 tháng 10 2017

Chương I  : Số hữu tỉ. Số thực