Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: -1/200<0<1/2000
b: \(\dfrac{-11}{56}=\dfrac{-275}{56\cdot25}=\dfrac{-275}{1400}\)
\(\dfrac{-25}{124}=\dfrac{-275}{124\cdot11}=\dfrac{-275}{1364}\)
mà 1400>1364
nên \(\dfrac{-11}{56}>-\dfrac{25}{124}\)
1. Câu hỏi của Cuber Việt ( Câu b í -.- )
2. Quy đồng mẫu số:
\(\dfrac{a}{b}=\dfrac{a.\left(b+2018\right)}{b.\left(b+2018\right)}=\dfrac{ab+2018a}{b.\left(b+2018\right)}\)
\(\dfrac{a+2018}{b+2018}=\dfrac{\left(a+2018\right).b}{\left(b+2018\right).b}=\dfrac{ab+2018b}{b.\left(b+2018\right)}\)
Vì \(b>0\) \(\Rightarrow\) Mẫu 2 phân số ở trên dương.
So sánh \(ab+2018a\) và \(ab+2018b\):
. Nếu \(a< b\Rightarrow\) Tử số phân số thứ 1 < Tử số phân số thứ 2.
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)
. Nếu \(a=b\) \(\Rightarrow\) Hai phân số bằng 1.
. Nếu \(a>b\Rightarrow\) Tử số phân số thứ 1 > Tử số phân số thứ 2.
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)
3. \(\dfrac{x}{6}-\dfrac{1}{y}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{y}=\dfrac{x}{6}-\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{y}=\dfrac{x-3}{6}\)
\(\Rightarrow y.\left(x-3\right)=6\)
Ta có: \(6=1.6=2.3=(-1).(-6)=(-2).(-3)\)
Tự lập bảng ...
Vậy ta có những cặp x,y thỏa mãn là:
\(\left(1,7\right);\left(6,2\right);\left(2,4\right);\left(3,3\right);\left(-1,-5\right);\left(-6,0\right);\left(-2,-2\right);\left(-3,-1\right)\)
\(\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{a\left(b+2018\right)}{b\left(b+2018\right)}\\\dfrac{a+2018}{b+2018}=\dfrac{b\left(a+2018\right)}{b\left(b+2018\right)}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{ab+2018a}{b^2+2018b}\\\dfrac{a+2018}{b+2018}=\dfrac{ab+2018b}{b^2+2018b}\end{matrix}\right.\)
Cần so sánh:
\(ab+2018a\) với \(ab+2018b\)
Cần so sánh \(2018a\) với \(2018b\)
Cần so sánh \(a\) với \(b\)
\(a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+2018}{b+2018}\)
\(a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)
\(a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+2018}{b+2018}\)
Bài 2:
a)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)
=> a = b = c
b)
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)
=> x = y = z (theo a)
Thay x = y = z vào biểu thức, ta có:
\(M=\dfrac{x^{333}.x^{666}}{x^{999}}=1\)
c)
\(ac=b^2\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
\(ab=c^2\Rightarrow\dfrac{b}{c}=\dfrac{c}{a}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Rightarrow a=b=c\)
Thay a = b = c vào biểu thức, ta có:
\(M=\dfrac{a^{333}}{a^{111}.a^{222}}=1\)
Bài 1:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)
\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
Ta có đpcm.
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)
Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.
Từ \(a\left(y+z\right)=b\left(z+x\right)\), áp dụng t/c dãy tỉ số bằng nhau ta được
\(\dfrac{z+x}{a}=\dfrac{y+z}{b}=\dfrac{z+x-y-z}{a-b}=\dfrac{x-y}{a-b}\)
\(\Rightarrow\dfrac{z+x}{a}.\dfrac{1}{c}=\dfrac{y+z}{b}.\dfrac{1}{c}=\dfrac{x-y}{c\left(a-b\right)}\)(1)
Tương tự : từ \(b\left(z+x\right)=c\left(x+y\right)\)
\(\Rightarrow\dfrac{z+x}{c}=\dfrac{x+y}{b}=\dfrac{z+x-x-y}{c-b}=\dfrac{y-z}{c-b}\)\(\Rightarrow\dfrac{z+x}{c}.\dfrac{1}{a}=\dfrac{x+y}{b}.\dfrac{1}{a}=\dfrac{y-z}{c-b}.\dfrac{1}{a}\)
\(\Rightarrow\dfrac{z+x}{ac}=\dfrac{x+y}{ab}=\dfrac{y-z}{a\left(c-b\right)}\)(2)
từ \(a\left(y+z\right)=c\left(x+y\right)\)
\(\Rightarrow\dfrac{y+z}{c}=\dfrac{x+y}{a}=\dfrac{y+z-x-y}{c-a}=\dfrac{z-x}{c-a}\)\(\Rightarrow\dfrac{y+z}{c}.\dfrac{1}{b}=\dfrac{x+y}{a}.\dfrac{1}{b}=\dfrac{z-x}{c-a}.\dfrac{1}{b}\)
\(\Rightarrow\dfrac{y+z}{bc}=\dfrac{x+y}{ab}=\dfrac{z-x}{b\left(c-a\right)}\)(3)
Kết hợi (1);(2)(3) => ĐPCM
tik mik nha !!!
BÀI 1:
\(\dfrac{a}{k}=\dfrac{x}{a}\Rightarrow a^2=kx\)
\(\dfrac{b}{k}=\dfrac{y}{b}\Rightarrow b^2\)=ky
Vay \(\dfrac{a^2}{b^2}=\dfrac{kx}{ky}=\dfrac{x}{y}\)
b) Ta có: [tex]\frac{a^{2} + c^{2}}{b^{2} + a^{2}}[/tex]= [tex]\frac{bc + c^{2}}{b^{2} + bc}= \frac{c(b +c)}{b(b + c)}= \frac{c}{b}[/tex] (đpcm)
a)
Khi a, b cùng dấu:
\(\Rightarrow\dfrac{a}{b}\ge0\) (Luôn luôn nhận giá trị không âm)
b)
Khi a, b khác dấu:
\(\Rightarrow\dfrac{a}{b}< 0\) (Luôn luôn nhận giá trị âm)
P/s: Đề phải là thế này nhé:
Cho số hữu tỉ abab ( a;b∈Z∈Z;b≠0≠0).
So sánh ababvới 0 khi
a) a, b cùng dấu.
b) a, b khác dấu.
Chúc bạn học tốt!
a ) khi a , b cùng dấu thì :
\(\dfrac{a}{b}\) \(\ge\) 0 ( vì luôn nhận giá trị dương hoặc = 0 )
b ) khi a , b khác dấu thì :
\(\dfrac{a}{b}\) \(\le\) 0 ( vì luôn nhận giá trị âm hoặc = 0 )