K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

A = 2 + 22 + 23 + 24 + ... + 29 + 210 (có 10 số; 10 chia hết cho 2)

A = (2 + 22) + (23 + 24) + ... + (29 + 210)

A = 2.(1 + 2) + 23.(1 + 2) + ... + 29.(1 + 2)

A = 2.3 + 23.3 + ... + 29.3

A = 3.(2 + 23 + ... + 29) chia hết cho 3 (đpcm)

14 tháng 7 2016

2 + 22 + 23 + 24 +.....+ 29 + 210

= (2 + 22) + (23 + 24) +.....+ (29 + 210)

= 2(1 + 2) + 23(1 + 2) +....+ 29(1 + 2)

= 3.(2 + 23 +.... + 29) chia hết cho 3

=> A = 2 + 22 + 23 + 24 +.....+ 29 + 210 chia hết cho 3 (Đpcm)

5 tháng 1 2017

minh chi lam dc cau a thoi nha nhung hay t i c k cho minh

3 + 32 = 12 chia het cho 4  3 + 32 + 33 + .......+39 + 310 = 30 .[ 3+32 ] + 32 . [ 3 + 3] + ....+38 . [ 3 + 32 ]

=30 . 12 + 3 . 12 +.....+ 38 . 12 = 12.[3+ 32 +....+ 38 ] 

vi 12 chia het cho 4 nen 12 nhan voi so tu nhien nao thi so do cung chia het cho 4 nen A chia het cho 4

10 tháng 12 2017

hghjhgjhgjh

14 tháng 2 2018

\(a)\) Đặt \(A=5+5^2+5^3+5^4+...+5^{99}+5^{100}\)ta có : 

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)

\(A=5.6+5^3.6+...+5^{99}.6\)

\(A=6.\left(5+5^3+...+5^{99}\right)\) \(⋮\) \(6\)

Vậy \(A⋮6\)

14 tháng 2 2018

\(b)\) Đặt \(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}\) ta có : 

\(B=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(B=2\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)

\(B=2.31+...+2^{96}.31\)

\(B=31.\left(2+2^6+...+2^{96}\right)\) \(⋮\) \(31\)

Vậy \(B⋮31\)

Năm mới zui zẻ ^^

14 tháng 10 2017

A=(2+22)+(23+24)+...+(289+290)

A=(2x1+2x2)+(23x1+23x2)+...+(289+290)

A=2x(1+2)+23x(1+2)+...+289x(1+2)

A=3x(2+23+...+289) chia hết cho 3

A=(2+22+23)+(24+25+26)+...+(288+289+290)

A=(2x1+2x2+2x22)+(24x1+24x2+24x22)+...+(288x1+288x2+288x22)

A=2x(1+2+22)+24x(1+2+22)+...+288x(1+2+22)

A=7x(2+24+288) chia hết cho 7

Mà (3;7)=1  =>A chia hết cho 21

6 tháng 12 2017

A=(2+22)+(23+24)+...+(289+290)

=2(1+2)+23(1+2)+...+289(1+2)

=2.3+23.3+...+289.3

Nên A chia hết cho 3

A=(2+22+23)+(24+25+26)+...+(288+289+290)

=2(1+2+22)+24(1+2+22)+...+288(1+2+22)

=2.7+24.7+...+288.7

Nên A chia hết cho 7 . Vậy A chia hết cho 21

29 tháng 11 2018

10 bn nhanh nhất k nha

29 tháng 11 2018

\(a,\)Ta có:

\(A=3+3^2+3^3+...+3^{10}\)

    \(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)

    \(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)

    \(=3\cdot4+3^3\cdot4+...+3^9\cdot4\)

    \(=4\left(3+3^3+...+3^9\right)⋮4\)

\(\Rightarrow3+3^2+3^3+...+3^{10}⋮10\\ \Rightarrow A⋮10\)

\(\Rightarrow\)ĐPCM

8 tháng 12 2018

Ta có ;

S = 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 

    = ( 1 + 2 ) + ( 2 + 2 3 ) + ( 2 + 2 ) + ( 2 + 2 )

    = ( 1 + 2 ) + 2 2 ( 1 + 2 ) + 2 4 ( 1 + 2 ) + 2 6 ( 1 + 2 )

    = 3 + 2 2 .3 + 2 4 .3 + 2 6 .3

    = 3 . ( 1 + 2 2 + 2 4 + 2 6 )  chia hết cho 3  (  Vì 3 chia hết cho 3 )

 A = 3 + 3 + 3 + ..... + 3 + 3 10

    = ( 3 + 3 2 ) + ( 3 3 + 3 4 ) .... + ( 3 9 + 3 10 )

    = 3 ( 1 + 3 ) + 3 3 . ( 1 + 3 ) + .... + 3 9 ( 1 + 3 )

    = 3 . 4 + 3 3 . 4 + .... + 3 9 . 4

    = 4 . ( 3 + 33 + ... + 3 9 ) chia hết cho 4 ( Do 4 chia hết cho 4 )

8 tháng 12 2018

\(S=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+\left(2^6+2^7\right)\)

\(S=3+3\cdot2^2+3\cdot2^4+3\cdot2^6=3\left(1+2^2+2^4+2^6\right)⋮3\)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)

\(A=4\cdot3+4\cdot3^3+...+4\cdot3^9=4\cdot\left(3+3^3+...+3^9\right)⋮4\)

23 tháng 12 2015

vào câu hỏi tương tự đi bạn