K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2020

Với n chẵn thì \(S_n=\frac{-n}{2}\)nên \(S_{60}=-30\)

Với n lẻ thì \(S_n=\frac{n+1}{2}\)nên \(S_{35}=18\)

Vậy \(S_{35}+S_{60}=-12\)

24 tháng 8 2016

Sn = [ 1 + 3 + 5 +...+ (2n + 1 ) ] - [2 + 4 + 6 +...+ 2n] 

Ta có nhóm thứ nhất là một cấp số cộng có công sai là d=2, só hạn đầu u1 = 1 

=> Nên Sn1 = nu1 + 1/2*n(n-1)*d = n + n(n - 1) 

Tương tự nhóm thứ hai là một cấp số cộng có công sai là d=2, số hạn đầu v1 = 2 

> Nên Sn2 = nv1 + 1/2*n(n-1)*d = 2n + n(n-1) 

Sn = Sn1 - Sn2 = -n 

Vậy S35 + S60 = -35 + (-60) = -95 

24 tháng 8 2016

Sn = [ 1 + 3 + 5 +...+ (2n + 1 ) ] - [2 + 4 + 6 +...+ 2n] 

Ta có nhóm thứ nhất là một cấp số cộng có công sai là d=2, só hạn đầu u1 = 1 

=> Nên Sn1 = nu1 + 1/2*n(n-1)*d = n + n(n - 1) 

Tương tự nhóm thứ hai là một cấp số cộng có công sai là d=2, số hạn đầu v1 = 2 

> Nên Sn2 = nv1 + 1/2*n(n-1)*d = 2n + n(n-1) 

Sn = Sn1 - Sn2 = -n 

Vậy S35 + S60 = -35 + (-60) = -95 

15 tháng 1 2018

Câu hỏi của trần như - Toán lớp 7 - Học toán với OnlineMath

Bài 1 em tham khảo tại link trên nhé.

15 tháng 7 2015

+) Nhận xét: Với n thuộc N ta có :   n3 - n = n(n- 1) = n.(n - 1).(n + 1) 

n - 1; n ; n + 1 là 3 số tự nhiên liên tiếp nên tích n(n-1).(n+1) chia hết cho 6 => n3 - n chia hết cho 6

Xét S - N = (n13+n23+...+nk3 ) -  (n1+n2+n3+...+nk) = (n13 - n1) + (n23 - n2) + ...+ (nk3 - nk

từ nhận xét trên =>  n13 - n chia hết cho 6; n23 - n2 chia hết cho 6 ;...; nk3 - nk chia hết cho 6

=> S - N chia hết cho 6 

=> S và N có cùng số dư khi chia cho 6

Xét N = 20152016 chia cho 6

Có: 2015 đồng dư với 5 (mod 6)

=> 20152 đồng dư với 52 (mod 6); 52 đồng dư với 1 (mod 6)

=> 20152 đòng dư với 1 (mod 6)

=> 20152016 = (20152)1008 đồng dư với 11008 = 1(mod 6)

=> N chia cho 6 dư 1 => S chia cho 6 dư 1