Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2 nề
A=\(\frac{2x+1}{x^2+2}\)=\(\frac{x^2+2-2x-x^2-1}{x^2+2}\)= \(\frac{x^2+2}{x^2+2}\)-\(\frac{x^2+2x+1}{x^2+2}\) 1- \(\frac{x^2+2x+1}{x^2+2}\)= 1- \(\frac{\left(x+1\right)^2}{x^2+2}\)
vậy max A = 1 khi x= -1
1. = [(x^2-2xy+y^2)+2.(x-y).2+4] - 9
= (x-y+2)^2-9
= (x-y+2-3).(x-y+2+3) = (x-y-1).(x-y+5)
2. Có : n^3+n+2 = (n^3+1)+(n+1) = (n+1).(n^2-n+1+1) = (n+1).(n^2-n+2)
Nếu n lẻ => n+1 chia hết cho 2 => n^3+n+2 chia hết cho 2
Mà n^3+n+2 > 2 => n^3+n+2 là hợp sô
Nếu n chẵn thì n^2 chia hết cho 2 => n^2-n+2 chia hết cho 2 => n^3+n+2 chia hết cho 2
Mà n^3+n+2 > 2 = >n^3+n+2 là hợp số
Tk mk nha
câu 1 //Đó là số 24, 25,26.
Giải thích:
Gọi số nhỏ nhất là a-1, các số khác sẽ là a, a+1
ta có (a+1)*a - (a-1)*a =50
=> a*a+a - a*a +a=50 => 2*a=50 =>a=25.
các số còn lại là 24 và 26
a, Gọi 3 só tự nhiên liên tiếp cần tìm là: \(a-1;a;a+1\left(a\in N\right)\)
Ta có: \(a\left(a-1\right)+50=a\left(a+1\right)\)
\(\Leftrightarrow a^2-a+50=a^2+a\)
\(\Leftrightarrow a^2-a^2+50=a+a\)
\(\Leftrightarrow2a=50\Leftrightarrow a=25\)
\(\Rightarrow a-1=25-1=24\)
và \(a+1=25+1=26\)
Vật 3 số tự nhiên liên tiếp cần tìm là 24;25;26
a) \(n=a^2+b^2\)
\(2n=2a^2+2b^2=a^2+b^2-2ab+a^2+b^2+2ab=\left(a-b\right)^2+\left(a+b\right)^2\)
b) \(2n\)là số chẵn nên hai số chính phương có tổng là \(2n\)cùng tính chẵn lẻ.
\(2n=\left(a-b\right)^2+\left(a+b\right)^2\)
\(\Rightarrow n^2=a^2+b^2\)
c) \(n^2=\left(a^2+b^2\right)^2=a^4+2a^2b^2+b^4=a^4-2a^2b^2+b^4+4a^2b^2\)
\(=\left(a^2-b^2\right)^2+\left(2ab\right)^2\)