\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2016

Ta có:

\(\frac{1}{51}>\frac{1}{100}\)

\(\frac{1}{52}>\frac{1}{100}\)

...

\(\frac{1}{99}>\frac{1}{100}\)

\(\frac{1}{100}=\frac{1}{100}\)

=> S = \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\)

Mà số số hạng của S là: (100 - 51) : 1 + 1 = 50 (số)

=> S \(>\frac{1}{100}.50\)

=> S \(>\frac{1}{2}\)

Vậy S > 1/2.

Mình không chắc đã đúng đâu nhưng mình cứ giair thử nhé ! 

Ta có : 

A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)+ ... + \(\frac{1}{99}-\frac{1}{100}\)

\(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)

\(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)

\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)x 2 

\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)= B 

Vậy , A = B 

~ Chúc bạn học giỏi ! ~

22 tháng 7 2015

\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}\)

\(=\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{\left(1+\frac{1}{99}\right)+\left(1+\frac{2}{98}\right)++...+\left(1+\frac{98}{2}\right)1}\)

\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}}{\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}+\frac{100}{100}}\)

\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}}{100\times\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)}\)

\(=\frac{1}{100}\)

 

22 tháng 11 2015

\(A=\frac{\frac{98}{2}+1+\frac{97}{3}+1+.....+\frac{2}{98}+1+\frac{1}{99}+1+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{99}+\frac{1}{100}}=\frac{\frac{100}{2}+\frac{100}{3}+........+\frac{100}{98}+\frac{100}{99}+\frac{100}{100}}{\frac{1}{2}+\frac{1}{3}+......+\frac{1}{99}+\frac{1}{100}}\)

    \(=\frac{100\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)}{\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)}=100\)

16 tháng 4 2017

anh chiu

16 tháng 4 2017

chán thế