\(a\sqrt{b}\) .  tính...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề; SA=a*căn 2

a: (SC;(ABCD))=(CS;CA)=góc SCA

AC=căn 2*AB^2=a*căn 2

tan SCA=SA/AC=1

=>góc SCA=45 độ

b: BC vuông góc AD

BC vuông góc SA

=>BC vuông góc (SAD)

=>(SB;(SAD))=(SB;SC)

SC=căn SA^2+AC^2=2a

SB=căn SA^2+AB^2=căn 2a^2+a^2=a*căn 3

BS^2+BC^2=SC^2

=>ΔBSC vuông tại B

=>(SB;SC)=góc BSC

sin BSC=BC/SC=1/2

=>góc BSC=30 độ

c: BC vuông góc AB

BC vuông góc SA

=>BC vuông góc (SAB)

=>(SC;(SAB))=(SC;SB)=góc CSB=30 độ

13 tháng 3 2022

undefinedundefinedundefined

31 tháng 3 2017

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

- Xác định góc \(\alpha\) giữa SC và mặt phẳng (SAB)

\(\left\{{}\begin{matrix}S\in\left(SAB\right)\\CB\perp\left(SAB\right)\end{matrix}\right.\) \(\Rightarrow\left[\widehat{SC,\left(SAB\right)}\right]=\widehat{CSB}=\alpha\)

- Tính góc \(\alpha\) :

Trong tam giác vuông \(SBC\), ta có :

\(\tan\alpha=\dfrac{BC}{SB}=\dfrac{1}{\sqrt{3}}\Rightarrow\alpha=30^0\)

NV
1 tháng 3 2023

a.

\(SA\perp\left(ABCD\right)\Rightarrow AB\) là hình chiếu vuông góc của SB lên (ABCD)

\(\Rightarrow\widehat{SBA}=\left(SB;\left(ABCD\right)\right)\)

\(tan\widehat{SBA}=\dfrac{SA}{AB}=\dfrac{\sqrt{2}}{2}\Rightarrow\widehat{SBA}\approx35^016'\)

Tương tự \(SA\perp\left(ABCD\right)\Rightarrow\widehat{SCA}=\left(SC;\left(ABCD\right)\right)\)

\(AC=\sqrt{AD^2+DC^2}=a\sqrt{2}\)

\(\Rightarrow tan\widehat{SCA}=\dfrac{SA}{AC}=1\Rightarrow\widehat{SCA}=45^0\)

b.

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AB\\AB\perp AD\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAD\right)\)

\(\Rightarrow\left(AH;\left(SAD\right)\right)=90^0-\left(AH;AB\right)=90^0-\widehat{HAB}\)

Gọi E là trung điểm AB \(\Rightarrow ADCE\) là hình vuông \(\Rightarrow\widehat{ACE}=45^0\)

Tam giác BCE vuông cân tại E (do \(EB=EC=a\)) nên \(\widehat{ECB}=45^0\)

\(\Rightarrow\widehat{ACB}=90^0\) hay \(BC\perp AC\Rightarrow BC\perp\left(SAC\right)\) (do \(SA\perp BC\))

\(\Rightarrow BC\perp AH\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH\perp BH\)

Hay tam giác ABH vuông tại H 

\(AH=\dfrac{SA.AC}{\sqrt{SA^2+AC^2}}=a\)

\(\Rightarrow cos\widehat{HAB}=\dfrac{AH}{AB}=\dfrac{1}{2}\Rightarrow\widehat{HAB}=60^0\)

\(\Rightarrow\widehat{HAB}=60^0\Rightarrow\left(AH;\left(SAD\right)\right)=30^0\)

Theo cmt \(BC\perp\left(SAC\right)\Rightarrow\left(SB;\left(SAC\right)\right)=\widehat{BSC}\)

\(SC=\sqrt{SA^2+AC^2}=2a\) ; \(SB=\sqrt{SA^2+AB^2}=a\sqrt{6}\)

\(\Rightarrow cos\widehat{BSC}=\dfrac{SC}{SB}=\dfrac{\sqrt{6}}{3}\Rightarrow\widehat{BSC}\approx35^016'\)

NV
1 tháng 3 2023

loading...

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) A là hình chiếu của S trên (ABCD) \(\left( {SA \bot \left( {ABCD} \right)} \right)\)

C là hình chiếu của C trên (ABCD)

\( \Rightarrow \) AC là hình chiếu của SC trên (ABCD)

\( \Rightarrow \) \(\left( {SC,\left( {ABCD} \right)} \right) = \left( {SC,AC} \right) = \widehat {SCA}\)

Xét tam giác ABC vuông tại B có

\(A{C^2} = A{B^2} + B{C^2} = 2{a^2} \Rightarrow AC = a\sqrt 2 \)

Xét tam giác SAC vuông tại A có

\(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{{a\sqrt 2 }}{{a\sqrt 2 }} = 1 \Rightarrow \widehat {SCA} = {45^0}\)

Vậy \(\left( {SC,\left( {ABCD} \right)} \right) = {45^0}\)

b) \(\left. \begin{array}{l}AC \bot BD\left( {hv\,\,ABCD} \right)\\SA \bot BD\left( {SA \bot \left( {ABCD} \right)} \right)\\AC \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow BD \bot \left( {SAC} \right) \Rightarrow \left( {BD,\left( {SAC} \right)} \right) = {90^0}\)

c) Gọi \(AC \cap BD = \left\{ O \right\}\) mà \(BD \bot \left( {SAC} \right)\)

\( \Rightarrow \) O là hình chiếu của B trên (SAC)

S là hình chiếu của S trên (SAC)

\( \Rightarrow \) SO là hình chiếu của SB trên (SAC).

 

a: SO vuông góc (ABCD)

=>(SAC) vuông góc (ABCD)

SO vuông góc (ABCD)

=>(SBD) vuông góc (ABCD)

b: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

d: (SB;(ABCD))=(BS;BO)=góc SBO

cos SBO=OB/SB=a*căn 2/2/(a*căn 2)=1/2

=>góc SBO=60 độ