Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(S=5+5^2+5^3+...+5^{96}\)
\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)+...+\left(5^{91}+5^{92}+5^{93}+5^{94}+5^{95}+5^{96}\right)\)
\(S=5.\left(1+5+5^2+5^3+5^4+5^5\right)+...+5^{91}.\left(1+5^2+5^3+5^4+5^5\right)\)
\(S=5.3906+...+5^{91}.3906\)
\(S=3906.\left(5+...+5^{96}\right)\)
\(S=3.126.\left(5+...+5^{91}\right)\) chia hết cho \(6.\)
b) Do \(S\) là tổng các lũy thừa có cơ số là \(5\).
Cho nên mỗi lũy thừa đều tận cùng là \(5\).
Mà \(S\) có tất cả \(96\) số
\(\Rightarrow\) Chữ số tận cùng của \(S\) là \(0\).
\(S=5+5^2+5^3+..+5^{96}\)
\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)+\left(5^7+5^8+5^9+5^{10}+5^{11}+5^{12}\right)+...+\left(5^{91}+5^{92}+5^{93}+5^{94}+5^{95}+5^{96}\right)\)\(S=1\left(5+5^2+5^3+5^4+5^6\right)5^6\left(5+5^2+5^3+5^4+5^5+5^6\right)+...+5^{90}+\left(5+5^2+5^3+5^4+5^5+5^6\right)\)\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)\left(1+5^6+...+5^{90}\right)\)\(S=19530\left(1+5^6+...+5^{90}\right)\)
\(S=155.126.\left(1+5^6+...+5^{90}\right)\)
\(S⋮126\rightarrowđpcm\)
\(S=5+5^2+5^3+...+5^{96}\)
\(S=\overline{...5}+\overline{...5}+\overline{...5}+\overline{...5}+...+\overline{...5}+\overline{...5}\)\(S=\left(\overline{...5}+\overline{...5}\right)+\left(\overline{...5}+\overline{...5}\right)+...+\left(\overline{...5}+\overline{...5}\right)\)\(S=\overline{...0}+\overline{...0}+\overline{...0}\)
\(S=\overline{...0}\)
Bài làm
Ta có:
S = 5 + 52 + 53 + ... + 596
S = ( 5 + 54 ) + ( 52 + 55 ) + ( 53 + 56 ) + ... + ( 592 + 595 ) + ( 593 + 596 )
S = 5( 1 + 53 ) + 52( 1 + 53 ) + 53( 1 + 53 ) + ... + 592( 1 + 53 ) + 593( 1 + 53 )
S = 5( 1 + 125 ) + 52( 1 + 125 ) + 53( 1 + 125 ) + ... + 592( 1 + 125 ) + 593( 1 + 125 )
S = ( 1 + 125 )( 5 + 52 + 53 + ... + 592 + 593 )
S = 126( 5 + 52 + 53 + ... + 592 + 593 )
Mà \(126⋮126\)
=> \(126\left(5+5^2+5^3+...+5^{92}+5^{93}\right)⋮126\)
Vậy \(S=5+5^2+5^3+...+5^{96}⋮126\)
# Học tốt #
a) Ta có : S = 4 + 42 + 43 + ... + 490
=> 4S = 42 + 43 + 44 + ... + 491
=> 4S - S = (42 + 43 + 44 + ... + 491) - (4 + 42 + 43 + ... + 490)
=> 3S = 491 - 4
=> S = \(\frac{4^{91}-4}{3}\)
b) Khi đó 3S + 4 = 4x + 10
<=> 491 - 4 + 4 = 4x + 10
=> 4x + 10 491
=> x + 10 = 91
=> x = 81
Vậy x = 81
S = 4 + 42 + 43 + ... + 490
Chứng minh chia hết cho 5
S = ( 4 + 42 ) + ( 43 + 44 ) + ... + ( 489 + 490 )
= 4( 1 + 4 ) + 43( 1 + 4 ) + ... + 489( 1 + 4 )
= 4.5 + 43.5 + ... + 489.5
= 5( 4 + 43 + ... + 489 ) chia hết cho 5 ( đpcm )
Chứng minh chia hết cho 21
S = ( 4 + 42 + 43 ) + ( 44 + 45 + 46 ) + ... + ( 488 + 489 + 490 )
= 4( 1 + 4 + 42 ) + 44( 1 + 4 + 42 ) + ... + 488( 1 + 4 + 42 )
= 4.21 + 44.21 + ... + 488.21
= 21( 4 + 44 + ... + 488 ) chia hết cho 21 ( đpcm )
Tính S
S = 4 + 42 + 43 + ... + 490
4S = 4( 4 + 42 + 43 + ... + 490 )
= 42 + 43 + 44 + ... + 491
4S - S = 3S
= ( 42 + 43 + 44 + ... + 491 ) - ( 4 + 42 + 43 + ... + 490 )
= 42 + 43 + 44 + ... + 491 - 4 - 42 - 43 - ... - 490
= 491 - 4
\(3S=4^{91}-4\Rightarrow S=\frac{4^{91}-4}{3}\)
Tìm x
3S + 4 = 4x+10 ( 3S mới tính được bạn nhé '-' )
<=> 491 - 4 + 4 = 4x+10
<=> 491 = 4x+10
<=> 91 = x + 10
<=> x = 81
a) Ta có: \(S=5+5^2+5^3+...+5^{96}\)
\(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{93}+5^{96}\right)\)
Vì mỗi cặp của đa thức \(S\)có hai hạng tử nên tổng số cặp là: \(\frac{96}{2}=48\)( cặp )
\(\Rightarrow\)Đa thức \(S\)không dư số nào
\(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{93}+5^{96}\right)\)
\(\Leftrightarrow S=5.\left(5^0+5^3\right)+5^2\left(5^0+5^3\right)+5^3.\left(5^0+5^3\right)+...+5^{93}.\left(5^0+5^3\right)\)
\(\Leftrightarrow S=5.126+5^2.126+5^3.126+...+5^{93}.126\)
\(\Leftrightarrow S=\left(5+5^2+5^3+...+5^{93}\right).126⋮126\)
Vậy \(S⋮126\)
3)
a)\(\frac{4n+5}{n}=4+\frac{5}{n}\)nguyen nen n\(\in\)U(5)=\(\left\{1,5\right\}\)vi n thuoc N
b)\(\frac{n+5}{n+1}=1+\frac{4}{n+1}\)nguyen nen (n+1)\(\in U\left(4\right)=\left\{1,2,4\right\}\)vi n+1>-1
=> n\(\in\left\{0,1,3\right\}\)
Bài 1:
a)[(2x-13):7].4 = 12
Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau
\(\Leftrightarrow\frac{8x-52}{7}=\frac{12}{1}\Rightarrow\left(8x-52\right)1=7.12\)
Chia cả hai vế cho 4 ta đc:
\(\frac{8x-52}{4}=\frac{7.12}{4}\)
\(\Leftrightarrow2x-13=21\)
\(\Leftrightarrow2x=34\)
\(\Leftrightarrow x=17\)
b.1270:[115 - (x-3)] = 254
\(\Leftrightarrow\frac{1270}{118-x}=254\)
\(\Leftrightarrow-\frac{254\left(x-113\right)}{x-118}=0\)
\(\Leftrightarrow-254\left(x-113\right)=0\)
\(\Leftrightarrow x-113=0\)
\(\Leftrightarrow x=113\)
Bài 2:(mk ngu toán CM)
Bài 3:
a)\(\frac{4n+5}{n}=\frac{4n}{n}+\frac{5}{n}=4+\frac{5}{n}\in Z\)
=>5 chia hết n
=>n thuộc Ư(5)
=>n thuộc {1;5) Vì n thuộc N
b)(n+5) chia hết cho (n+1)
=>n+1+4 chia hết n+1
=>4 chia hết n+1
=>n+1 thuộc Ư(4)
=>n+1 thuộc {1;2;4} Vì n thuộc N
=>n thuộc {0;1;3}
S=(5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^28+5^29+5^30)
=>Có 30:3=10 nhóm
=>S=5(1+5+5^2)+...+5^28(1+5+5^2)
=>S=5.31+...+5^28.31
S=31(5+....+5^28) chia hết cho 31
nhớ bấm đúng cho mình bạn nhé
a, 2n-3 chia hết cho n+1
=>2(n+1) - 5 chia hết cho n+1
=>5 chia hết cho n+1. Từ đó tìm dc n
b, <=> 5(x+y)=xy
<=>(x-5)(y-5)=25. Đây là pt tích từ đó tìm đc x,y
c, Từ gt =>5^b chia hết cho 5^c
=>a^3+3a^2+5 chia hết cho a+3
=>5 chia hết cho a+3 =>a=2=>c=1=>b=2
tìm m để pt sau có 4 nghiệm phân biệt
(x-2)(x-3)(x+4)(x-5)=m
chữ số tận cùng của a2 +1 muốn chia hết cho 5 phải là 0;5
vậy để a2 +1 chia hết cho 5 thì a2 phải có số tận cùng là 4 ; 9
a2 =.............4
a2 = ............9
a) S = (5 + 52 + 53 + 54 + 55 + 56) +...+ (591 + 592 + 593 + 594 + 595 + 596)
S = 5(1 + 5 + 52 + 53 + 54 + 55) +...+ 591(1 + 52 + 53 + 54 + 55)
S = 5.31.126 +...+ 591.31.126
S = (5.31 +...+ 591.31).126 chia hết cho 126 (đpcm)
b) Do S là tổng các lũy thừa có cơ số là 5.
→ Mỗi lũy thừa đều tận cùng là 5.
Mà S có 96 số như vậy → chữ số tận cùng của S là 0