Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=5+5^2+5^3+..+5^{2008}\)
\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)+...\left(5^{2003}+5^{2004}+5^{2005}+5^{2006}+5^{2007}+5^{2008}\right)\)
\(S=5.\left(1+5+25+125+625+3125\right)+...+5^{2003}.\left(1+5+25+125+625+3125\right)\)
\(S=5.3906+...+5^{2003}.3906\)
\(S=3906.\left(5+...+5^{2003}\right)\)chia hết cho 126
=> S chia hết cho 3906
Ủng hộ mk nha !!! ^_^
\(S=5+5^2+5^3+..+5^{2008}\)
\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)+...\left(5^{2003}+5^{2004}+5^{2005}+5^{2006}+5^{2007}+5^{2008}\right)\)
\(S=5.\left(1+5+25+125+625+3125\right)+...+5^{2003}.\left(1+5+25+125+625+3125\right)\)
\(S=5.3906+...+5^{2003}.3906\)
\(S=3906.\left(5+...+5^{2003}\right)\)chia hết cho 126
=> S chia hết cho 3906
/vip/minan_3712
/vip/ngoclinh
/vip/muonduochoc
/vip/khanhhay2002@gmail.com
mấy pạn ơi giúp mk với
\(S=5+5^2+5^3+...+5^{2008}\)
a) Ta có: \(126=5^0+5^3\)
\(5+5^4=5\left(5^0+5^3\right)\text{ }⋮\text{ }126,\text{ }5^2+5^5=5^2\left(5^0+5^3\right)\text{ }⋮\text{ }126,...\)
Áp dụng lần lượt như thế, ta có:
\(\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+\left(5^7+5^{10}\right)+\left(5^8+5^{11}\right)+\left(5^9+5^{12}\right)+...+\left(5^{2005}+5^{2008}\right)\text{ }⋮\text{ }126\)
Còn thiếu \(5^{2006}+5^{2007}\), ta có: \(5^{2006}+5^{2007}=5^{2006}\left(5^0+5^1\right)=5^{2006}\cdot6=2\cdot3\cdot5^{2006}\)
Trong khi đó: \(126=2\cdot3^2\cdot7\)
Ta dễ thấy \(5^{2006}+5^{2007}\) không chia hết cho \(3\cdot7=21\), nên \(5^{2006}+5^{2007}\) không chia hết cho 126.
Từ đó suy ra S không chia hết cho 126.
b) Tất cả các số hạng đều có chữ số tận cùng là 5.
Biểu thức S có \(\left(2008-1\right)+1=2008\) số hạng cộng lại với nhau.
=> S có chữ số tận cùng là 0 (vì số lượng các số hạng cộng lại với nhau là số chẵn)
a) Ta có:
S=51+52+53+...+596 gồm 96 số hạng
=(51+52+...+56)+(57+58+...+512)+...+(591+592+...+596)
=(51+52+...+56)+56.(51+52+...+56)+...+585.(51+52+...+56)
=19530+56.19530+...+585.19530
=19530.(1+55+...+585)
Vậy: S chia hết cho 126(Vì 19530 chia hết cho 126)
b) Vì S chia hết cho 19530 nên S có tận cùng bằng 0(19530=1953.10)
a, \(\)Ta có : \(S=5+5^2+5^3+...+5^{2008}\)
\(S=\left(5+5^4\right)+\left(5^2.5^5\right)+...+\left(5^{2005}+2^{2008}\right)\)
\(S=5.\left(1+125\right)+5^2.\left(1+125\right)+...+5^{2005}.\left(1+125\right)\)
\(S=5.126+5^2.126+...+5^{2005}.126\) \(⋮\) \(126\)
b, Vì S là tổng của các lũy thừa có cơ số là là 5 nên mỗi lũy thừa có số tận cùng là 5
=> S có tất cả 2008 số hạng
=> Chữ số tận cùng của S là 0 ( zero)
a, Ta Có :S=5+ 52+ 53+....+ 52008
S=(5+ 54)+ (52+ 55)+.........+ (52005+ 52008)
S= 5(1+ 125)+ 52(1+125)+.......+ 52005( 1+125)
S=126( 5+ 52 + 53+.....+ 52005) chia hết co 126
b, Do S là tổng các lũy thừa có cơ số là 5 nên mỗi lũy thừa đều có tận cùng là 5
Do S có tất cả 2008 số hạng => Chữ số tận cùng của S là 0
\(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3-\frac{5}{n-1}\)
=>n-1 \(\in\) Ư(5) = {-5;-1;1;5}
n-1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
Vậy n = {-4;0;2;6}
S = 5+52+53+...+52006
5S = 52+53+54+...+52007
5S - S = (52+53+54+...+52007) - (5+52+53+...+52006)
4S = 52007 - 5
S = \(\frac{5^{2007}-5}{4}\)
A=\(17^{2008}-11^{2008}-3^{2008}\)
A=\(\left(17^4\right)^{502}-11^{2008}-\left(3^4\right)^{502}\)
A=\(83521^{502}-11^{2008}-81^{502}\)
A=\(\left(......1\right)-\left(.......1\right)-\left(........1\right)\)
A=\(\left(.........9\right)\)
Vậy A có chữ số tận cùng là 9
2)M=\(17^{25}+24^4-13^{21}\)
M=\(17^{24}\cdot17+\left(24^2\right)^2-13^{20}\cdot13\)
M=\(\left(17^4\right)^6\cdot17+576^2-\left(13^4\right)^5\cdot13\)
M=\(83521^6\cdot17+\left(......6\right)-28561^5\cdot13\)
M=\(\left(.......1\right)\cdot17+\left(........6\right)-\left(.........1\right)\cdot13\)
M=\(\left(........7\right)+\left(..........6\right)-\left(...........3\right)\)
M=\(\left(...........0\right)⋮10\)
Vậy M\(⋮10\)
Câu a bạn phải cm rõ ra mình ms k cho bn dc chứ
a) \(\text{Chia hết cho 126}\)
b) \(\text{ Do S là tổng các lũy thừa có cơ số là 5. Cho nên mỗi lũy thừa đều tận cùng là 5. Mà S có tất cả 96 số như vậy. Nên chữ số tận cùng của S là 0. }\)