\(Cho\) \(S=3^0+3^2+3^4+3^6+.......+3^{2002}\)

       ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2015

a)S=30+32+...+32002=1+32+...+32002

=>32.S=32+34+...+32004

=>9S=32+34+...+32004

=>9S-S=(32+34+...+32004)-(1+32+...+32002)

=>8S=32004-1

=>S=\(\frac{3^{2004}-1}{8}\)

b)S=30+32+...+32002=1+32+...+32002

=(1+32+34)+...+(31998+32000+32002)

=91+....+31998.91

=91.(1+...+31998)

=7.13.(1+...+31998) chia hết cho 7

Vậy S chia hết cho 7

1 tháng 2 2017

a) S = 30 + 32 + 34 + ..... + 32002

9S = 32 + 34 + ..... + 32002 + 32004

9S - S = (32 + 34 + ..... + 32002 + 32004) - (30 + 32 + 34 + ..... + 32002)

8S = 32004 - 30

S = \(\frac{3^{2004}-1}{8}\)

b) S = 30 + 32 + 34 + ..... + 32002

S = (30 + 32 + 34) + (36 + 38  + 310) + ..... + (32000 + 32001 + 32002)

S = (1 + 9 + 81) + 36.(1 + 9 + 81) + ..... + 32000.(1 + 9 + 81)

S = 91 + 36 . 91 + ...... + 32000 . 91

S = 91 . (1 + 36 + ...... + 32000)

S = 7 . 13 . (1 + 36 + ...... + 32000)

1 tháng 2 2017

thank you!!!♥♥♥

21 tháng 11 2015

Thái Thùy Dung bn vào câu hỏi tương tự họ giải chi tiết nhá. Nhớ ****. Mk tl sớm nhất royy

17 tháng 11 2016

S=\(3^0+3^2+3^4+...+3^{2002}\)

\(3^2\cdot S=3^2+3^4+3^6+...+3^{2004}\)

9S-S=\(\left(3^2+3^4+3^6+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)

8S=\(3^{2004}-3^0\)

8S-\(3^{2004}-1\)=\(3^{2004}-1-3^{2004}-1\)=-2

 

11 tháng 12 2016

Xem lại cái đề nhé

11 tháng 12 2016

\(S=1+\left(2-3+5+6-.....-998+999\right)+1000\)

\(S=1001+S1\)

VOI \(S1=O\)

VAY \(S\)CHIA HET 11

3 tháng 7 2016

Câu 1 đề bài kiểu j thế..bn sửa lại đj

28 tháng 1 2017

mình đồng ý với lê chí công

1 tháng 8 2019

 a, \(S=3^0+3^2+3^4+....+3^{2002}\)

\(3S=3+3^3+....+3^{2003}\)

\(2S=3^{2003}-1\)

b,  \(S=\left(3^0+3^2+3^4\right)+\left(3^4+3^6+3^8\right)+...+\left(3^{2000}+3^{1998}+3^{2002}\right)⋮7\)

=> (đpcm)

18 tháng 5 2017

Easy????

a) Ta có: S = \(3^0+3^{2^{ }}+...+3^{2002}\)

=> 32S = \(3^2+3^4+3^6+...+3^{2004}\)

=> 9S - S = \(\left(3^2+3^4+3^6+...+3^{2004}\right)-\left(3^0+3^2+...+3^{2002}\right)\)

=> 8S = \(3^{2004}-3^0\)

=> S = \(\dfrac{3^{2004}-1}{8}\)

b) Ta lại có: S = \(3^0+3^{2^{ }}+...+3^{2002}\)

=\(\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+....+\left(3^{1998}+3^{2000}+3^{2002}\right)\)

= \(3^0\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+....+\)\(3^{1998}\left(1+3^2+3^4\right)\)

= \(91\left(3^0+3^6+...+3^{1998}\right)\)

Vì 91 \(⋮\) 7 => \(91\left(3^0+3^6+...+3^{1998}\right)\) \(⋮\) 7

=> S \(⋮\) 7 ( đpcm)

19 tháng 12 2018

https://hoc247.net/hoi-dap/toan-6/chung-minh-s-1-2-2-2-2-3-2-4-2-5-2-6-2-7-chia-het-cho-3-faq250754.html

20 tháng 10 2019

S= \(1+2+2^2+...+2^7\)

2S= \(2\cdot\left(2+2^2+...+2^7\right)\)

2S= \(2^1+2^2+...2^8\)

1S= 2S - S = \(\left(2^1+2^2+...2^8\right)-\left(1+2+2^2+...+2^7\right)\)

1S= \(2^1+2^2+...+2^8-1-2-2^2-...-2^7\)

1S= \(2^8-1\)

1S= \(256-1\)

1S= 255

=> 1S chia hết cho 3

Mà 1S= S

=> S chia hết cho 3

Vậy S chia hết cho 3

22 tháng 2 2020

Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\) 

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(=1-\frac{1}{2015}=\frac{2014}{2015}< 1\)

=> A < 1 (đpcm)