K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2016

S=2+22+23+...+2100

=(2+22+23+24)+...+(297+298+299+2100)

=2.(1+2+22+23)+...+297.(1+2+22+23)

=2.15+...+297.15

=15.(2+...+297) chia hết cho 15       đpcm

9 tháng 12 2016

A=2+2^2+2^3+...+2^100

  = (2+2^2+2^3+2^4)+...(2^97+2^98+2^99+2^100)

  =2(1+2+2^2+2^3)+....+2^97(1+2+2^2+2^3)

  = 2.15 +.....+2^97.15

  =(2+....+2^97).15 chia hết cho 15

9 tháng 12 2016

S = 21 + 22 + 23 + 24 + .... + 2100

S = ( 21 + 22 + 23 + 24 + .... + ( 297 + 298 + 299 + 2100 )

S = 2 . ( 1 + 2 + 4 + 8 ) +.... + 297 . ( 1 + 2 + 4 + 8 )

S = 2 . 15 + ... + 297 . 15

S = ( 2 + ... + 297 ) . 15

Mà 15 chia hết cho 15 suy ra S chia hết cho 15

12 tháng 11 2018

LBDRA^bb

S=2+22+23+...+2100

S=(2+22)+(23+24)+....+(299+2100)

S=6+22(23+24)+....+298(2+22)

S=1.6+22.6+...+298.6  

S=6.(1+22+....+296)    chia hết cho 3

S=2+22+23+...+2100

S=(2+22+23+24)+....+(297+298+299+2100)

S=30+.....+296(2+22+23+24)

S=1.30+....+296.30

S=30.(1+....+296)     chia hết cho 15

10 tháng 3 2020

a,2 + 2^2 + 2^3 + ... + 2^100

<=> (2+2^2) + (2^3+2^4) + .... + (2^99+2^100)

<=> 2.(1+2) + 2^3.(1+2) +.....+ 2^99.(1+2)

<=>2.3 + 2^3.3 +...+2699.3

<=>3.(2+2^3+....+2^99)

=> S chia hết cho 3

4 tháng 8 2015

a) S=\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

S = 6 +\(2^2.\left(2+2^2\right)+....+2^{98}.\left(2+2^2\right)\)chia hết cho 6 

b) Tương tự a 

c) ta có S chia hết cho 2 và chia hết cho 5 ( câu b chia hết cho 15 tức chia hết cho 5 ) nên S chia hết cho 10 hay chữ số tận cùng của S là 0 

Nhớ ticks đúng cho mình nhé

 

 

4 tháng 8 2015

a) S = 2 + 22 + 23 + 24 + .... + 2100

= ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 299 + 2100 )

= 6 + ( 22 .2 + 22 . 22 ) + ... + ( 298 . 2 + 298 . 22 )

= 6 + 22 ( 2 + 22 ) + .... + 298 ( 2 + 22 )

= 6 + 22 . 6 + .... + 298 . 6

= 6 . ( 1 + 22 + ... + 298 ) chia hêt cho 3 ( vì 6 chia hết cho 3 )

7 tháng 5 2019

Giải:

A = 2 + 22 + 23 +...+ 2100
<=> A = ( 2+22 ) + ( 23+24 ) +...+( 299 + 2100 )
<=> A = 6+ 22 ( 2+22 )+ ...+ 298 (2+22 )
<=> A = 6+ 22 .6+ ...+ 298 .6
<=> A = 6.(22+...+298 ) chia hết cho 3

Câu b tương tự

2 tháng 8 2019

A- 2 + 22 +2 +............+2100

<=> A= (2 + 22) +(23 + 240 +....+(299+2100)

<=>A=6+22.6+.....+298:6

<=>A=6.(22+.......298) :3

28 tháng 9 2015

s= 2+2^2 +2^3 +...+ 2^100

s= (2+2^2 +2^3 +2^4)+...+ (2^97 +2^98 + 2^99 + 2^100)

s= 2. 15 +...+2^97. 15

s= 15(2+...+2^100)chia hết cho 15 => ĐPCM

 

28 tháng 9 2015

S=2+22+23+...+2100

Số số hạng của S là:(100-1):1+1=100(số)

Vì 100 chia hết cho 4 nên ta nhóm 4 số hạng vào 1 nhóm

=(2+22+23+24)+...+(297+298+299+2100)

=2(1+2+4+8)+...+297(1+2+4+8)

=2.15+...+297.15

=15(2+...+297)

Vì 15 chia hết cho 15=>15(2+...+297) chia hết cho 15

Hay S chia hết cho 15

Vậy S chia hết cho 15

8 tháng 9 2015

S = (21+22)+(23+24)+...+(299+2100)

S = 2.(1+2)+23.(1+2)+...+299.(1+2)

S = 2.3+23.3+...+299.3

S = 3.(2+23+...+299)

=> S chia hết cho 3

S = (21+22+23+24)+(25+26+27+28)+...+(297+298+299+2100)

S = 2.(1+2+4+16)+25.(1+2+4+16)+...+297.(1+2+4+16)

S = 2.15+25.15+...+297.15

S = 15.(2+25+...+297)

=> S chia hết cho 15

5 tháng 1 2017

Bài dễ ợt ai mà chẳng làm được