K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

Từ 1 đến 9 có số lượt chữ số là:

( 9 - 1 ) : 1 + 1 x 1 = 9 ( chữ số )

Từ 10 đến 99 có số lượt chữ số là:

[( 99 - 10 ) : 1 + 1 ] x 2 = 180 ( chữ số )

Từ 1 đến 100 có số lượt chữ số là:

180 + 9 + 3 = 192 ( chữ số )

Có 11 lượt chữ số 7 : 7;17;27;37;47;57;67;77;87;97

umgr hộ nha

xinlooix mình trả lời nhầm

3 tháng 11 2017

các bn giúp mk nha mk đang rất cần ai trả lwofi đầu tiên và chính xác mk tích cho

13 tháng 12 2018

a, S=1+2^7+(2+2^2)+(2^3+2^4)+(2^5+2^6)

    S=1+128+2*3+(2^3*1+2^3*2)+(2^5*1+2^5*2)

    S=129+2*3+2^3*(1+2)+2^5*(1+2)

    S=3*43+2*3+2^3*3+2^5*3

    S=3*(43+2+2^3+2^5)chia hết cho 3 nên S chia hết cho 3

     

26 tháng 12 2018

c) S = ( -2 ) + 4+ ( -6 ) + 8 + ... + ( -2002 ) + 2004

    S = [ (-2)+4] + [ (-6) + 8 ] + ... + [ (-2002) + 2004 ]

    S = 2 + 2 + 2 + ... + 2 ( 501 số hạng 2 )

    S = 2*501

    S = 1002

14 tháng 10 2017

Lẹ đi mọi người mik đang cần gấp!

14 tháng 10 2017

1/ ta có : 

11.12.13+ 114.115.116+ 1117.1118.1119= 11.3.4.13+ 3.38.115.116+ 1117.1118.3.373

= 3(11.4.13+ 38.115.116+ 1117.1118.373 ) chia hết cho 3 => đpcm

2/ a)(mik nghĩ là bn nhầm, nếu 7^2 +...+ 7^60 chia hết cho 8 thì chắc chắn là sai hoàn toàn, nên mik sửa đề) ta có :

S = \(7+7^2+7^3+7^4+7^5+...+7^{59}+7^{60}\) 

\(=\left(7+7^2\right)+\left(7^3+7^4\right)+\left(7^5+7^6\right)+...+\left(7^{59}.7^{60}\right)\)

\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{59}\left(1+7\right)\)

\(=7.8+7^3.8+...+7^{59}.8\)

\(=8\left(7+7^3+...+7^{59}\right)⋮8\)(đpcm)

b) \(A=a+a^2+a^3+a^4+...+a^{23}+a^{24}\)

\(=\left(a+a^2\right)+\left(a^3+a^4\right)+...+\left(a^{23}+a^{24}\right)\)

\(=a\left(1+a\right)+a^3\left(1+a\right)+...+a^{23}\left(1+a\right)\)

\(=\left(1+a\right)\left(a+a^3+...+a^{23}\right)⋮\left(a+1\right)\)(đpcm)

Nhớ kb với mik nha!

30 tháng 6 2015

b) S=(30+32+34)+...+(31998+32000+32002)

S= 91+...+31998(1+32+34)

S=91+...+31998.91

S=91(1+36+...+31998)

S=13.7.(1+36+...+31998) chia hết cho 7

4 tháng 4 2017

Mình chịu

Bó tay 

SORRY

~~~ Hello ~~~

21 tháng 2 2015

a)nhân S với 32 ta dc:

9S=3^2+3^4+...+3^2002+3^2004

=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)

=>8S=32004-1

=>S=32004-1/8

b) ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7

ta có:32004-1=(36)334-1=(36-1).M=7.104.M

=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7

 

29 tháng 4 2016

S chia het cho 7

15 tháng 2 2019

\(a,S=1+3^2+3^4+...+3^{2002}\)

\(3^2S=3^2+3^4+3^6+...+3^{2004}\)

\(8S=3^{2004}-1\)

\(S=\frac{3^{2004}-1}{8}\)

15 tháng 2 2019

\(\text{a) }S=1+3^2+3^4+3^6+.....+3^{2000}+3^{2002}\)

\(3^2S=3^2+3^4+3^6+......+3^{2002}+3^{2004}\)

\(3^2S-S=\left(3^2+3^4+.....+3^{2004}\right)-\left(1+3^2+...+3^{2002}\right)\)

\(2^3S=2^{2004}-1\)

\(S=\frac{2^{2004}-1}{8}\)

\(S=1+3^2+3^4+3^6+....+3^{2002}\)

\(S=\left(1+3^2+3^4\right)+......+\left(3^{1998}+3^{2000}+3^{2002}\right)\)

\(S=1\left(1+3^2+3^4\right)+.....+3^{1998}\left(1+3^2+3^4\right)\)

\(S=1.91+....+3^{1998}.91\)

\(S=91\left(1+....+3^{1998}\right)\)

\(S=13.7\left(1+....+3^{1998}\right)⋮7\)

27 tháng 1 2017

S = ( 30 + 32 + 34 ) + ( 36 + 38 + 310 ) + ... + ( 31998 + 32000 + 32002 )

= ( 30 + 32 + 34 ) + 36 ( 30 + 32 + 34 ) + ... + 31998 ( 30 + 32 + 34 )

= ( 1 + 9 + 81 ) + 36(1 + 9 + 81) + ... + 31998.( 1 + 9 + 81 )

= 91 + 36 .91 + ... + 31998.91

= 91( 1 + 36 + ... + 31998 ) 

= 7.13( 1 + 36 + ... + 31998 ) chia hết cho 7

=> S chia hết cho 7 ( đpcm )

27 tháng 1 2017

a ) Nhân cả hai vế của S với 32 ta đc :

32S = 32 ( 1 + 32 + 34 + ... + 32002 )

= 32 + 34 + 36 + ... + 32004

Trừ của 2 vế của 32S  cho S ta được :

32S - S = ( 32 + 34 + 36 + ... + 32004 ) - ( 1 + 32 + 34 + ... + 32002 )

8S = 32004 - 1

\(\Rightarrow\frac{3^{2004}-1}{8}\)