Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lại đề câu a) cho rõ lại
Câu b) Tại x=2013 thì B=x2013-(x+1)x2012+(x+1)x2011-(x+1)x2010+...-(x+1)x2+(x+1)x-1
= x2013-x2013-x2012+x2012+x2011-x2011-x2010+..-x3 - x2+x2+x-1
= x-1 = 2012
Để ý ta có:
M=(x^2-1)(x^2-2)(x^2-3)...(x^2-25)...(x^2-2013)
Thay x=5,ta đc
M=(5^2-1)(5^2-2)(5^2-3)...(5^2-25)...(5^2-2013)
=(5^2-1)(5^2-2)(5^2-3)...0....(5^2-2013)=0 vậy M=0
Nhớ tik
S=\(\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)-\left(\frac{1}{2}-\frac{1}{4}-...-\frac{1}{2012}\right)\)
S=\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
S=\(\left(\text{}\text{}\text{}1+\frac{1}{2}+...+\frac{1}{2013}\right)-1-\frac{1}{2}-...-\frac{1}{2012}\)
S=\(\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2013}\)
=>S=P
=>S-P=0
=>(S-P)^2013=0
\(P=\frac{1}{1007}+\frac{1}{1008}+.....+\frac{1}{2012}+\frac{1}{2013}\)
\(P=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1006}+\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1006}\right)\)
\(P=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1006}+\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2012}\right)\)
\(\)
\(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2012}+\frac{1}{2013}=S\)
Vậy (S-P)2013=0
Ta thấy
3^2017 > 3^2015
5^2015/3 > 1^2013/3
5 >1
Suy ra A = 3^2017 + 5^2015/3 + 5 > B= 3^2015 + 1^2013/3 + 1
Vậy A>B