Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(3S=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}\)
\(\Rightarrow4S=\left(1-3+3^2-3^3+3^4-...+3^{98}-3^{99}\right)+\left(3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}\right)\)
\(\Rightarrow4S=1-3^{100}\)
\(\Rightarrow S=\frac{1-3^{100}}{4}\)
Mk ngĩ ra rồi
S=(1+32)+(34+36)+...+(396+398)
S=10+34.(1+32)+...+396.(1+32)
S=10+34.10+...+396.10
S=10(1+34+...+396)
có thừa số 10 chia hết cho 10 nên tích chia hết cho 10
S=1+32+34+36+.............................+398
9S=3+34+36+38+.........................+3100
=> 9S-S=3100-1
3100-1=(34)25-1
=(...1)25-1
=(.....1)-1
=(.....0) chia hết cho 10
Vậy S chia hết cho 10
a, \(S=1+3^2+3^4+3^6+...+3^{98}\)
\(\Rightarrow3^2S=3^2+3^4+3^6+3^8+...+3^{100}\)
\(\Rightarrow3^2S-S=\left(3^2+3^4+3^6+3^8+...+3^{100}\right)-\left(1+3^2+3^4+3^6+...+3^{98}\right)\)
\(\Rightarrow8S=3^{100}-1\)
\(\Rightarrow S=\frac{3^{100}-1}{8}\)
Vậy : \(S=\frac{3^{100}-1}{8}\)
b, \(S=1+3^2+3^4+3^6+...+3^{98}\)
\(S=\left(1+3^2\right)+\left(3^4+3^6\right)+...+\left(3^{96}+3^{98}\right)\)
\(S=\left(1+3^2\right)+3^4\left(1+3^2\right)+...+3^{96}\left(1+3^2\right)\)
\(S=1.10+3^4.10+...+3^{96}.10\)
\(S=\left(1+3^4+...+3^{96}\right).10\)
Vì : \(1+3^4+...+3^{96}\in N\Rightarrow S⋮10\)
Vậy : \(S⋮10\)
S=1-3+3^2-3^3+...+3^98-3^99
3S=3-3^2+3^3-3^4+...+3^99-3^100
3S+S=3-3^2+3^3-3^4+...+3^99-3^100+1-3+3^2-3^3+...+3^98-3^99
4S=-3^100+1
S=(-3^100+1):4
Bạn tham khảo bài này nà
https://olm.vn/hoi-dap/detail/214049743330.html
vào tkhđ của t sẽ thấy or ib đưa link nhé
Học tốt
\(S=1-3-3^2+...+3^{98}-3^{99}\)
\(S=\left(1-3+3^2-3^3\right)+...+\left(3^{36}-3^{37}+3^{38}-3^{39}\right)\)
\(S=-20+...+3^{36}.\left(-20\right)\)
\(S=-20\left(1+...+3^{36}\right)⋮\left(-20\right)\)
\(\Rightarrow-20\left(1+...+3^{36}\right)\)là bội của \(\left(-20\right)\)
\(\Rightarrow S\in B\left(20\right)\)
hok tốt!!
a,S=(1-3+32-33)+............+(396-397+398-399)
S=(-20)+...................+396.(1-3+32-33)
S=(-20)+................+396.(-20)
S=(1+34+........+396).(-20) chia hết cho 20(đpcm)
b,3S=3-32+33-34+..............+399-3100
3S+S=(3-32+33-34+.............+399-3100)+(1-3+32-33+...............+398-399)
4S=-3100+1
S=\(\frac{-3^{100}+1}{4}\)
a) S=1-3+3^2-3^3+...+3^98-3^99
=(1-3+3^2-3^3)+...+(3^96-3^97+3^98-3^99)
=-20+..+3^96(1-3+3^2-3^3)
=-20(1+...+3^96) chia hết cho -20
=> S là bội của -20
b) S=1-3+3^2-3^3+..+3^98-3^99
3S=3-3^2+3^3-3^4+...+3^99-3^100
3S+S=3-3^2+3^3-3^4+...+3^99-3^100+1-3+3^2-3^3+...+3^98-3^99
4S=-3^100+1
S=(-3^100+1):4
S = 1 + 3 + 32 + 33+.....+398
3S = 3 + 32 + 33+......+ 398+ 399
3S- S = 399 - 1
2S = 399 - 1
S = ( 399-1):2
Ta có:
$3S = 3 + 3^2 + 3^3 + ... + 3^{99}$
$3S - S = (3 + 3^2 + 3^3 + ... + 3^{99}) - (1+3+3^2+3^3+...+3^{98})$
$= 3^{99} + (3 - 3) + (3^2 - 3^2) + ... + (3^{98} - 3^{98}) - 1$
$= 3^{99}-1$.
Vậy $2S = 3^{99}-1$ nên $S = \dfrac{3^{99}-1}2$.