Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a) vào đây xem nhé
https://olm.vn/hoi-dap/question/122892.html
a) S= 1+2+22+...+29
2S=2+22+23+...+210
2S-S=(2+22+23+...+210)-(1+2+23+...+29)
S=210-1
5.28=2.2+1.28=1+22.28=1+210
=>S=5.28
b) A=1+2+22+....+2100
2A=2+22+23+...+2101
2A-A=(2+22+23+...+2101)-(1+2+22+...+2100)
A=2101-1
=> A<2101
nhận xét :
\(\frac{1}{2^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
.............
\(\frac{1}{100^2}=\frac{1}{100.101}=\frac{1}{100}-\frac{1}{101}\)
vậy
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{101}=\frac{9}{202}< \frac{3}{4}\)
Ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};.....;\frac{1}{100^2}< \frac{1}{99.100}\)
=>\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
=>\(S< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
=>\(S< \frac{1}{4}+\frac{1}{2}-\frac{1}{100}=\frac{3}{4}-\frac{1}{100}< \frac{3}{4}\)
=>S<3/4(đpcm)
Nhan xet:
\(\frac{1}{2^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
\(\frac{1}{4^2}< \frac{1}{4.5}=\frac{1}{4}-\frac{1}{5}\)
....
\(\frac{1}{100^2}< \frac{1}{100.101}=\frac{1}{100}-\frac{1}{101}\)
Vay:
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{101}=\frac{99}{202}< \frac{3}{4}\)
Ta có :
P = 1 + 3 + 32 + ... + 399 + 3100
3P = 3 + 32 + 33 + ... + 3100 + 3101
3P - P = ( 3 + 32 + 33 + ... + 3100 + 3101 ) - ( 1 + 3 + 32 + ... + 3100 + 3101 )
2P = 3101 - 1
P = \(\frac{3^{101}-1}{2}=\frac{3^{101}}{2}-\frac{1}{2}< \frac{3^{101}}{2}\)
Vậy P < \(\frac{3^{101}}{2}\)
\(\Rightarrow S=2+\left(2^2+2^3+2^4+2^5\right)+...+\left(2^{98}+2^{99}+2^{100}+2^{101}\right)\)
\(\Rightarrow S=2+2^2\left(1+2+2^2+2^3\right)+...+2^{98}\left(1+2+2^2+2^3\right)\)
\(\Rightarrow S=2+2^2.15+...+2^{98}.15=2+15\left(2^2+...+2^{98}\right)\) chia cho 15 dư 2
2S=2+2^2+2^3+...+2^101
2S-S=2^101-1
S=2^101-2<2^101
hok tốt
\(S=1+2+2^2+\cdot\cdot\cdot+2^{100}\)
\(\Rightarrow2S=2+2^2+2^3+\cdot\cdot\cdot+2^{101}\)
\(\Rightarrow2S-S=\left(2+\cdot\cdot+2^{101}\right)-\left(1+\cdot\cdot\cdot+2^{100}\right)\)
\(\Rightarrow S=2^{101}-1\)<\(2^{101}\)
\(\Rightarrow S\)<\(2^{101}\)