K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A thuộc S thì A=x^2+3y^2

Nếu x chia hết cho 2 thì từ N chẵn, ta có y chia hết cho 2 

=>N/4 thuộc S

Nếu x,y lẻ thì x^2-9y^2 đồng dư ra 1-9=0 mod 8

=>x-3y chia hết cho4 hoặc x+3y chia hết cho 4

Nếu x-3y chia hết cho 4 thì A/4=(x-3y/4)^2+3(x+y/4)^2 

=>A/4 thuộc S

Chứng minh tương tự, ta cũng được nếu x+3y chia hết cho 4 thì A/4 cũng thuộc S

=>ĐPCM

30 tháng 5 2015

A=(x+y)(x+2y)(x+3y)(x+4y)+y4

A=(x+y)(x+4y).(x+2y)(x+3y)+y4

A=(x2+5xy+4y2)(x2+5xy+6y2)+y4

A=(x2+5xy+ 5y2 - y2 )(x2+5xy+5y2+y2)+y4

A=(x2+5xy+5y2)2-y4+y4

A=(x2+5xy+5y2)2

Do x,y,Z nen x2+5xy+5y2 Z

​A là số chính phương 

30 tháng 5 2015

a) Ta có: A= (x+y)(x+2y)(x+3y)(x+4y)+y4

                = (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y2 
Đặt x2 + 5xy + 5y2 = h ( h thuộc Z):
A = ( h - y2)( h + y2) + y2 = h2 – y2 + y2 = h2 = (x2 + 5xy + 5y2)2
Vì x, y, z thuộc Z nên xthuộc Z, 5xy thuộc Z, 5y2 thuộc Z . Suy ra x2 + 5xy + 5ythuộc  Z
Vậy A là số chính phương.

 

10 tháng 8 2020

Theo đề bài, ta có: \(p^2+a^2=b^2\Rightarrow p^2=b^2-a^2=\left(b+a\right)\left(b-a\right)\)(1)

Vì p là số nguyên tố nên \(p^2\)có 3 ước là \(1;p;p^2\)(2)

Từ (1) và (2) suy ra có 3 khả năng có thể xảy ra là:

Khả năng 1: \(\hept{\begin{cases}b+a=1\\b-a=p^2\end{cases}}\). Điều này không thể xảy ra vì p > 3 nên \(p^2>9\Rightarrow b-a>9>1=b+a\Rightarrow-2a>0\)vô lí vì a nguyên dương

Khả năng 2: \(\hept{\begin{cases}b+a=p\\b-a=p\end{cases}}\Rightarrow b+a=b-a\Rightarrow2a=0\Rightarrow a=0\)(Loại vì a nguyên dương, không thể bằng 0)

Khả năng 3: \(\hept{\begin{cases}b+a=p^2\left(3\right)\\b-a=1\left(4\right)\end{cases}}\)

Lấy (3) - (4), ta được: \(2a=p^2-1=\left(p+1\right)\left(p-1\right)\)

Vì p là số nguyên tố lớn hơn 3 (*) nên p không chia hết cho 3 nên \(p^2\)chia 3 dư 1\(\Rightarrow p^2-1⋮3\)

\(\Rightarrow2a⋮3\)mà \(\left(2,3\right)=1\)nên \(a⋮3\)(**)

Từ (*) suy ra p lẻ nên \(p-1\)và \(p+1\)là hai số chẵn liên tiếp

Đặt \(p-1=2k\left(k\inℕ,k>1\right)\)thì \(p+1=2k+2\Rightarrow\left(p-1\right)\left(p+1\right)=4k\left(k+1\right)\)

Vì \(k\left(k+1\right)\)là tích của hai số nguyên liên tiếp nên \(k\left(k+1\right)⋮2\)suy ra \(4k\left(k+1\right)⋮8\)

hay \(2a⋮8\Rightarrow a⋮4\)(***)

Từ (**) và (***) suy ra \(a⋮12\)do \(\left(3,4\right)=1\)(đpcm)

Vì \(2a=p^2-1\Rightarrow2\left(p+a+1\right)\)       \(=2p+2a+2=2p+p^2-1+2=p^2+2p+1=\left(p+1\right)^2\)là số chính phương (đpcm)

2 tháng 4 2018

  zdvdz

28 tháng 8 2016

Vì a + 1 và b + 2009 chia hết cho 6 nên a + b + 2010 chia hết cho 6.

Mà 2010 chia hết cho 6 nên a + b chia hết cho 6.

4a không chia hết cho 6 nên 4a + a + b không chia hết cho 6.

Bạn xem lại đề.

20 tháng 9 2016

Sai đề rồi

9 tháng 10 2019

Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath

21 tháng 10 2016

Ta có :

\(A=3^{4\left(n+1\right)}-4^{3\left(n+1\right)}=81^{n+1}-64^{n+1}\)

\(=\left(81-64\right)\left(81^n+81^{n-1}.64+...+81.64^{n-1}+64^n\right)\)

\(=17\left(81^n+81^{n-1}.64+...+81.64^{n-1}+64^n\right)\)chia hết cho 17

Vậy ...