Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e. \(\frac{-3}{5}\cdot\frac{5}{7}+\frac{-3}{5}\cdot\frac{3}{7}+\frac{-3}{5}\cdot\frac{6}{7}=-\frac{3}{5}\left(\frac{5}{7}+\frac{3}{7}+\frac{6}{7}\right)=-\frac{3}{5}\cdot2=-\frac{6}{5}\)
f. \(\frac{1}{3}\cdot\frac{4}{5}+\frac{1}{3}\cdot\frac{6}{5}-\frac{4}{5}=\frac{1}{3}\left(\frac{4}{5}+\frac{6}{5}\right)-\frac{4}{5}=\frac{1}{3}\cdot2-\frac{4}{5}=\frac{2}{3}-\frac{4}{5}=-\frac{2}{15}\)
g. \(\frac{4}{19}\cdot\frac{-3}{7}+\frac{-3}{7}\cdot\frac{15}{19}+\frac{5}{7}=-\frac{3}{7}\left(\frac{4}{19}+\frac{15}{19}\right)+\frac{5}{7}=-\frac{3}{7}\cdot1+\frac{5}{7}=-\frac{3}{7}+\frac{5}{7}=\frac{2}{7}\)
h. \(\frac{5}{9}\cdot\frac{7}{13}+\frac{5}{9}\cdot\frac{9}{13}-\frac{5}{9}\cdot\frac{3}{13}=\frac{5}{9}\left(\frac{7}{13}+\frac{9}{13}-\frac{3}{13}\right)=\frac{5}{9}\cdot1=\frac{5}{9}\)
Bài 1:
a) Ta có: \(\frac{3}{5}+\frac{4}{15}\)
\(=\frac{9}{15}+\frac{4}{15}\)
\(=\frac{13}{15}\)
b) Ta có: \(\frac{-3}{5}+\frac{5}{7}\)
\(=\frac{-21}{35}+\frac{25}{35}=\frac{4}{35}\)
c) Ta có: \(\frac{5}{6}:\frac{-7}{12}\)
\(=\frac{5}{6}\cdot\frac{-12}{7}=\frac{-60}{42}=\frac{-10}{7}\)
d) Ta có: \(\frac{-21}{24}:\frac{-14}{8}\)
\(=\frac{-7}{8}:\frac{-7}{4}\)
\(=\frac{-7}{8}\cdot\frac{4}{-7}=\frac{4}{8}=\frac{1}{2}\)
e) Ta có: \(\frac{-3}{5}\cdot\frac{5}{7}+\frac{-3}{5}\cdot\frac{3}{7}+\frac{-3}{5}\cdot\frac{6}{7}\)
\(=\frac{-3}{5}\left(\frac{5}{7}+\frac{3}{7}+\frac{6}{7}\right)\)
\(=-\frac{3}{5}\cdot2=\frac{-6}{5}\)
f) Ta có: \(\frac{1}{3}\cdot\frac{4}{5}+\frac{1}{3}\cdot\frac{6}{5}-\frac{4}{3}\)
\(=\frac{1}{3}\cdot\frac{4}{5}+\frac{1}{3}\cdot\frac{6}{5}-\frac{1}{3}\cdot4\)
\(=\frac{1}{3}\left(\frac{4}{5}+\frac{6}{5}-4\right)\)
\(=\frac{1}{3}\cdot\left(-2\right)=\frac{-2}{3}\)
g) Ta có: \(\frac{4}{19}\cdot\frac{-3}{7}+\frac{-3}{7}\cdot\frac{5}{19}+\frac{5}{7}\)
\(=\frac{4}{19}\cdot\frac{-3}{7}+\frac{5}{19}\cdot\frac{-3}{7}+\frac{-3}{7}\cdot\frac{5}{-3}\)
\(=-\frac{3}{7}\left(\frac{4}{19}+\frac{5}{19}+\frac{-5}{3}\right)\)
\(=\frac{-3}{7}\cdot\left(\frac{27}{57}+\frac{-95}{57}\right)\)
\(=\frac{-3}{7}\cdot\frac{-68}{57}=\frac{68}{133}\)
h) Ta có: \(\frac{5}{9}\cdot\frac{7}{13}+\frac{5}{9}\cdot\frac{9}{13}-\frac{5}{9}\cdot\frac{3}{13}\)
\(=\frac{5}{9}\left(\frac{7}{13}+\frac{9}{13}-\frac{5}{13}\right)\)
\(=\frac{5}{9}\)
Áp dụng theo dạng toán số ai cập ta có:
4/1.5+4/5.9+4/9.13+4/13.17+4/17.21=1/1-1/5+1/5-1/9+1/9-1/13+1/13-1/17+1/17-1/21=1-1/21 < 1
Vậy tổng đó < 1
a )
\(\frac{-4}{9}.\frac{1}{3}-\frac{4}{9}.\frac{5}{6}+\frac{3}{7}.\frac{4}{9}\)
\(=\frac{4}{9}.\left(-\frac{1}{3}-\frac{5}{6}+\frac{3}{7}\right)\)
\(=\frac{4}{9}.\left(-\frac{14}{42}-\frac{35}{42}+\frac{18}{42}\right)\)
\(=\frac{4}{9}.\frac{-31}{42}\)
\(=-\frac{62}{189}\)
b )
\(\frac{2}{3}:\frac{3}{7}-\frac{2}{3}:\frac{4}{3}+\frac{2}{3}:\frac{1}{21}\)
\(=\frac{2}{3}.\frac{7}{3}-\frac{2}{3}.\frac{3}{4}+\frac{2}{3}.21\)
\(=\frac{14}{9}-\frac{1}{2}+14\)
\(=\frac{28}{18}-\frac{9}{18}+14\)
\(=\frac{19}{18}+14\)
\(=1+14+\frac{1}{18}\)
\(=15\frac{1}{18}\)
c )
\(\left(5\frac{1}{3}+3\frac{2}{3}\right)-4\frac{1}{3}\)
\(=\left(5+3-4\right)+\left(\frac{1}{3}+\frac{2}{3}-\frac{1}{3}\right)\)
\(=4\frac{2}{3}\)
\(=\frac{14}{3}\)
a) \(-\frac{4}{9}\cdot\frac{1}{3}-\frac{4}{9}\cdot\frac{5}{6}+\frac{3}{7}\cdot\frac{4}{9}\)
\(=\left(-\frac{4}{9}\right)\cdot\frac{1}{3}+\left(-\frac{4}{9}\right)\cdot\frac{5}{6}-\left(-\frac{4}{9}\right)\cdot\frac{3}{7}\)
\(=\left(-\frac{4}{9}\right)\left(\frac{1}{3}+\frac{5}{6}-\frac{3}{7}\right)\)
\(=\left(-\frac{4}{9}\right)\cdot\frac{31}{42}=-\frac{62}{189}\)
Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{2017}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{2016}{2017}\)
\(=\frac{1.2.3......2016}{2.3.4.......2017}\)
\(=\frac{1}{2017}\)