Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
S=abc+bca+cab
suy ra :S= (100a+10b+c) + 9100b+10c+a0 + 9100c+10a+b)
suy ra S= 111a+11b+111c
suy ra S= 111(1+b+c)=37.39 (a+b+c)
Gỉa sử S là số chính phương thì S phải chứa thừa số nguyên tó 37 vs số mũ chẵn nên
3(a+b+c) chia hết cho 37
suy ra : a+b+c chia hết cho 37
Điều này ko xáy ra vì :1< a+b+c lớn hơn hoặc bằng 27
Vậy S =abc+bca+cab ko hả là só chính phương
S=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)
Do 3 và 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương S
tick nha bạn
S = 100a+10b+c + 100b+10c+a + 100c+10a+b = 111(a+b+c) = 3.37(a+b+c)
=> Để S là số chính phương thì a+b+c = 3.37 = 111
mà 10 > a,b,c > 0 => Max(a+b+c) = 9+9+9 = 27 < 111
Vậy S không phải số chính phương
lưu ý điều kiện có a,b,c > 0 nên không thể cho S = 0 hay a+b+c = 0 là số chính phương khi và chỉ khi a=b=c=0
Ta có:
\(\overline{abc}+\overline{bca}+\overline{cab}\)
\(=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)
\(=100a+10b+c+100b+10c+a+100c+10a+b\)
\(=\left(100a+10a+a\right)+\left(100b+10b+b\right)+\left(100c+10c+c\right)\)
\(=111a+111b+111c\)
\(=111\left(a+b+c\right)\)
\(=37.3\left(a+b+c\right)\)
Giả sử \(S\)là số chính phương thì \(S\)phải chứa số \(37\)mủ chẵn
\(\Rightarrow3\left(a+b+c\right)⋮37\)
\(\Rightarrow a+b+c⋮37\)
Điều này không xảy ra vì \(1\le a+b+c\le27\)
Vậy \(\overline{abc}+\overline{bca}+\overline{cab}\) không phải là số chính phương (Đpcm)
Ta có S = abc + bca + cab
<=> S =( 100a + 10b + c)+ ( 100b + 10c + a) + ( 100c + 10a + b )
<=> S = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
<=> S = 111a + 111b + 111c => S = 111( a + b + c ) = 37 . 3 (a + b + c)
Giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn nên 3(a + b + c) chia hết 37
Suy ra : a+b+c chia hết cho 37
Điều này không xảy ra vì 1 ≤ a + b + c ≤ 27
Vậy S = abc + bca + cab không phải là số chính phương
Ta có: S=abc+bca+cab=100a+10b+c+100b+10c+a+100c+10a+b
=111a+111b+111c
=111.(a+b+c)
=3.37.(a+b+c)
Giả sử S là số chính phương thì S phải chứa thừa số 37 với số mũ chẵn
=> 3.(a+b+c) chia hết cho 37
=>(a+b+c) chia hết cho 37(vì 3 không chia hết cho 37)
Vì 0\(\le\)a,b,c<10
=>0\(\le\)a+b+c\(\le\)27
=> a+b+c không chia hết cho 37
Vậy S=abc+bca+cab không là số chính phương
A=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để A là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương A
Ta có:\(A=\overline{abc}+\overline{cab}+\overline{bca}=a.100+b.10+c+c.100+a.10+b+b.100+c.10+a\)
\(=a.111+b.111+c.111=\left(a+b+c\right)111\)
Để A là số chính phương thì khi phân tích A ra số nguyên tố các thừa số đều mũ chẵn
Mà \(A=\left(a+b+c\right)111=\left(a+b+c\right).3.37\)
=>Để A là số chính phương thì a+b+c=3.37<=>a+b+c=111,mà \(a+b+c\le9\left(a;b;c\inℕ\right)\)
Vậy không có a;b;c thỏa mãn hay A không là số chính phương
ai tích mình lên 10 cái mình tích người đó cả tháng
Ta co :
A=abc+bca+cab=(100a+10b+c)+(100b+10c+a)+(100c+10a+b)
=111a+111b+111c
=111(a+b+c)
De A la so chinh phuong
=> a+b+c <111
Ma a,b,c la so tu nhien be hon 10 nen a+b+c<30 va 111>30 nen a+b+c khong the bang 111
Hay A không phải là số chính phương
nho k nha
Ta có : abc+bca=cab
111a+111b=111
111(a+b)=111
a+b=1
Ma 1 khong phai la so chinh phuong
\(\Rightarrow\)abc+bca=cab (dpcm)
chắc chắn đúng luôn
S = abc (ngang) + bca (ngang) + cab (ngang)
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= 111a + 111b + 111c
= 111.(a + b + c)
=> Không phải là số chính phương vì a,b,c là các chữ số tự nhiên nên a + b + c ≠ 111
Nguồn : lấy từ bài Đinh Tuấn Việt
S = 111a+111b+111c
= 111(a+b+c)
=37*3*(a+b+c) (37 và 3 là số nguyên tố nên S không thể là số chính phương)
Vậy S không phải là số chính phương