K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2016

\(S=3+3^2+3^3+......+3^{2016}\)

=> \(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+......+\left(3^{2014}+3^{2015}+3^{2016}\right)\)

=> \(S=39+3^3.39+3^6.39+......+3^{2013}.39\)

=> \(S=39.\left(1+3^3+3^6+......+3^{2013}\right)\)

=> S Chia hết cho 39 (ĐPCM)

CHO TÍCH NHA !

14 tháng 11 2016

đúng rùi

6 tháng 6 2016

ta có: S=( 31+32+33+34+35+36)+...+32016

S= 31(1+3+32+33+34+35) +...+ 32011(1+3+32+33+34+35)

S= 31.364+...+ 32011.364

S= 364. ( 31+...+32011 )

S= 26.14.(31+...+32011) chia hết cho 26

vậy S chia hết cho 26

2 tháng 11 2016

s= 3+32+33+ ...+ 32016

= ( 3+32+33) + .....+( 32014+ 32015+32016)

= 3( 1+3+32)+.....+ 32014.( 1+3+32)

= (3+....+32014)(1+3+32)

= (3+....+32014)13 chia hết cho 13

câu còn lại nhốm 4 số nha

vì 3a+2b chia hết cho 17 nên (3a+2b)10 chia hết cho 17

ta có 10( 3a+2b) - 3( 10a+b) = 30a + 20b-30a-3b=17b chia hết cho 17 

=> 3( 10a+b) chia hết cho 17

=> 10a+b chia hết cho 17

10 tháng 2 2019

\(A,\)\(S=\left(3+3^2\right)+\left(3+3^2\right)3^2+...+\left(3+3^2\right)3^{2018} \)

\(\Rightarrow S=9\left(1+3^2+...+3^{2018}\right)\)

\(\Rightarrow S⋮9\)

\(B,\)\(S=3+3^2+3^3+\left(3+3^2+3^3\right)3^3+...\left(3+3^2+3^3\right)3^{2017}\)

\(S=39+39.3^3+...+39.3^{2017}\)

Nhưng xét lại thì thấy 2017 không chia hết cho 3 nên câu b có lẽ sai đề =)))))

\(C,\)\(S=\left(1+3+3^2+3^3\right).3+\left(1+3+3^2+3^3\right).3^4+...+\left(1+3+3^2+3^3\right).3^{2017}\)

\(S=40.3+40.3^4+...+40.3^{2017}\)

\(Vậy...\)

27 tháng 10 2018

\(S=3+3^2+3^3+...+3^{1998}\)

\(S=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{1997}+3^{1998}\right)\)

\(S=12+3^2\cdot\left(3+3^2\right)+...+3^{1996}\cdot\left(3+3^2\right)\)

\(S=12\cdot1+12\cdot3^2+...+12\cdot3^{1996}\)

\(S=12\cdot\left(1+3^2+...+3^{1996}\right)⋮12\)

b, tương tự nhưng nhóm 3 số hạng

27 tháng 10 2018

Bài ở đâu đấy Ly, k cho tớ đi!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

26 tháng 12 2016

S=4+4^2+4^3+4^4+...+4^2016

S=(4+4^2 +...+4^6)+....+(4^2011+4^2012+...+4^2016)

S=5460+...+4^2010*(4+4^2+...+4^6)

S=5460+..+5460*4^2010

S=5460*(1+..+4^2010)

Vì 5460 chia hết cho 420 nên S chia hết cho 420

12 tháng 11 2018

vì 39 chia hết cho 3 nên S chia hết cho 39

12 tháng 11 2018

Ta có : S = 3 + 32 + 33 + ... + 31998

            S = (3 + 32 + 33) + ... + (31996 + 31997 + 31998)

             S = 39 + ... + 31995(3 + 32 + 33)

             S = 39 + ... + 31995.39

            S = 39.(1 + ... + 31995\(⋮\)39

29 tháng 11 2018

a)

    \(S=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2015}+3^{2016}\right)\)

\(S=3\cdot12+3^2\cdot12+...+3^{2014}\cdot12=12\cdot\left(3+3^2+...+3^{2014}\right)⋮4\)

\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2014}+3^{2015}+3^{2016}\right)\)

\(S=3\cdot13+3^4\cdot13+...+3^{2014}\cdot13=13\cdot\left(3+3^4+...+3^{2014}\right)⋮13\)

b)

Tính S:

\(3S-S=\left(3^2+3^3+...+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2016}\right)\)

\(2S=3^{2017}-3\) suy ra \(2S+3=3^{2017}\) là 1 lũy thừa của 3.

c)

  Ta có \(S=\frac{3^{2017}-3}{2}\)

\(3^{2017}=\left(3^4\right)^{504}\cdot3=81^{504}\cdot3\)có tận cùng là 3.(Tự hiểu nha em)

Do đó \(3^{2017}-3\)tận cùng là 0 nên S có tận cùng là 0

9 tháng 6 2019

\(S=3+3^2+3^3+3^4+...+3^{2016}\)

\(3S=3^2+3^3+3^4+3^5+....+3^{2017}\)

\(3S-S=\left(3^2+3^3+3^4+...+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2017}\right)\)

\(2S=3^{2017}-3\)

\(S=\frac{3^{2017}-3}{2}\)

Vậy 2S + 3 = \(\left(\frac{3^{2017}-3}{2}\right).2+3\)\(=3^{2017}-3+3=3^{2017}\)

Vậy 2S + 3 là một lũy thừa của 3 (đpcm)