Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=3+3^2+3^3+...+3^{1997}+3^{1998}\)
\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)
\(S=3.\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{1995}+3^{1996}+3^{1997}\right)\)
\(S=3.13+13.3^4+...+13.3^{1995}\)
=>S chia hết cho 13 vì mỗi số hạng đều chia hết cho 13
=>dpcm
Ta có:
\(S=3+3^2+3^3+...+3^{1997}+3^{1998}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{1997}+3^{1998}\right)\)
\(=12\left(1+3^2+3^4+...+3^{1996}\right)\) chia hết cho \(2\)
Mặt khác, ta lại có \(S=3+3^2+3^3+...+3^{1997}+3^{1998}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)
\(=39\left(1+...+3^{1995}\right)\) chia hết cho \(13\)
Vì \(26=2.13\) và \(\left(2;13\right)=1\)
Do đó: \(S\) chia hết cho \(26\)
Ai li-ke tớ lên 80 điểm hỏi đáp thì tớ li-ke ng đó 2 tháng !!!
ta có: S = 3 + 3^2 + 3^3 + ...+3^1997 + 3^1998
S = (3 + 3^2 + 3^3) + (3^4+3^5+3^6) + ...+ ( 3^1996 + 3^1997 + 3^1998)
S = 3.(1+3+3^2) + 3^4.(1+3+3^2) + ...+ 3^1996.(1+3+3^2)
S = 3.13 + 3^4.13 + ...+ 3^1996.13
S = 13.(3 + 3^4 + 3^1996) chia hết cho 13 (1)
ta có: S = 3 + 3^2 + 3^3+...+3^1997+3^1998
S = (3+3^2) + (3^3+3^4) +...+(3^1997+3^1998)
S = 3.(1+3) + 3^3.(1+3)+...+3^1997.(1+3)
S = 3.4 +3^3.4 +...+3^1997.4
S = 4.(3+3^3 + ...+ 3^1997) chia hết cho 4
=> S chia hết cho 2 (2)
Từ (1);(2) => S chia hết cho 13.2 = 26
=> S chia hết cho 26
Ta có : S = 3 + 32 + 33 + ... + 31997 + 31998 .
=> S = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 31997 + 31998 ) .
=> S = 12 . ( 1 + 32 + 34 + ... + 31996 ) ⋮ 2 .
và S = 3 + 32 + 33 + ... + 31997 + 31998 .
=> S = ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ... + ( 31996 + 31997 + 31998 ) .
=> S = 39 . ( 1 + ... + 31995 ) ⋮ 13 .
Vì 16 = 13 . 2 và ( 2 , 13 ) = 1 nên S ⋮ 26 .
Vậy S ⋮ 26