Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+3^1+3^2+...+3^{30}\)
=>\(3S=3+3^2+3^3+...+3^{31}\)
=> \(3S-S=\left(3+3^2+3^3+...+3^{31}\right)-\left(1+3^1+3^2+...+3^{30}\right)\)
=>\(2S=3^{31}-1\)
=> \(S=\left(3^{31}-1\right):2\)
Ta có: \(3^{31}=3^3.3^{28}=27.\left(3^4\right)^7=27.81^7\)
Ta thấy 27 có tận cùng là 7; 817 có tận cùng là 1 nên 331 có tận cùng là 7
=> 331-1 có tận cùng là 6 nên (331-1):2 có tận cùng là 3 hoặc 8
Ko biết mk nhầm ở đâu đó. Các bn mà tìm đc lỗi sai thì nói cho mk nhé. mk sẽ theo dõi
S=1+3+32+33+...330=> 3S=3+32+33+....+331=>3S - S = 331 - 1= 34.7+3 --1 = (34)7.27 - 1=(...1).27-1=(...27)-1=(...26)
=>chữ số tận cùng của S là 26:2=13
vì số chính phương ko có t/c là 3 => S ko phải là số chính phương
tick mình nha
nhớ
chữ số tận cùng của S là 1
cách mình lôi thôi lắm chắc bạn ko biết đâu
Nhận xét: Cứ bốn số tự nhiên liên tiếp như trên thì tổng sẽ có 2 chữ số tận cùng là 40 nên Chữ số tận cùng của S sẽ là 200:4=50 và + với 1(30 do dư ra) nên chữ số tận cùng sẽ là 40+1=41.
tk nha
\(a,\\ Có.3A=3\left(1+3+3^2+...+3^{30}\right)=3+3^2+3^3+...+3^{31}\\ Mà.A=1+3+3^2+3^3+...+3^{30}\\ \Rightarrow2A=3^{31}-1\\ 2A\equiv3^{31}-1\left(Mod.10\right)\\ \equiv3^{4\cdot7+3}-1\\ \equiv1+27-1\equiv7\)
Phần gì không hiểu thì hỏi nhé