\(3^0\)+ \(3^2\)\(3^4\)+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2015

Thái Thùy Dung bn vào câu hỏi tương tự họ giải chi tiết nhá. Nhớ ****. Mk tl sớm nhất royy

1 tháng 2 2017

a) S = 30 + 32 + 34 + ..... + 32002

9S = 32 + 34 + ..... + 32002 + 32004

9S - S = (32 + 34 + ..... + 32002 + 32004) - (30 + 32 + 34 + ..... + 32002)

8S = 32004 - 30

S = \(\frac{3^{2004}-1}{8}\)

b) S = 30 + 32 + 34 + ..... + 32002

S = (30 + 32 + 34) + (36 + 38  + 310) + ..... + (32000 + 32001 + 32002)

S = (1 + 9 + 81) + 36.(1 + 9 + 81) + ..... + 32000.(1 + 9 + 81)

S = 91 + 36 . 91 + ...... + 32000 . 91

S = 91 . (1 + 36 + ...... + 32000)

S = 7 . 13 . (1 + 36 + ...... + 32000)

1 tháng 2 2017

thank you!!!♥♥♥

18 tháng 5 2017

Easy????

a) Ta có: S = \(3^0+3^{2^{ }}+...+3^{2002}\)

=> 32S = \(3^2+3^4+3^6+...+3^{2004}\)

=> 9S - S = \(\left(3^2+3^4+3^6+...+3^{2004}\right)-\left(3^0+3^2+...+3^{2002}\right)\)

=> 8S = \(3^{2004}-3^0\)

=> S = \(\dfrac{3^{2004}-1}{8}\)

b) Ta lại có: S = \(3^0+3^{2^{ }}+...+3^{2002}\)

=\(\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+....+\left(3^{1998}+3^{2000}+3^{2002}\right)\)

= \(3^0\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+....+\)\(3^{1998}\left(1+3^2+3^4\right)\)

= \(91\left(3^0+3^6+...+3^{1998}\right)\)

Vì 91 \(⋮\) 7 => \(91\left(3^0+3^6+...+3^{1998}\right)\) \(⋮\) 7

=> S \(⋮\) 7 ( đpcm)

1 tháng 8 2019

 a, \(S=3^0+3^2+3^4+....+3^{2002}\)

\(3S=3+3^3+....+3^{2003}\)

\(2S=3^{2003}-1\)

b,  \(S=\left(3^0+3^2+3^4\right)+\left(3^4+3^6+3^8\right)+...+\left(3^{2000}+3^{1998}+3^{2002}\right)⋮7\)

=> (đpcm)

3 tháng 7 2016

Câu 1 đề bài kiểu j thế..bn sửa lại đj

28 tháng 1 2017

mình đồng ý với lê chí công

29 tháng 3 2018

câu 1hinhf như sai đề

Tớ nghĩ là S= 30 + 3+ 34 +3+...+ 32002

thì đúng hơn

29 tháng 3 2018

sory. đề bài 1 là \(S=3^0+3^2+3^4+.....+3^{2002}\)

17 tháng 11 2016

S=\(3^0+3^2+3^4+...+3^{2002}\)

\(3^2\cdot S=3^2+3^4+3^6+...+3^{2004}\)

9S-S=\(\left(3^2+3^4+3^6+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)

8S=\(3^{2004}-3^0\)

8S-\(3^{2004}-1\)=\(3^{2004}-1-3^{2004}-1\)=-2

 

12 tháng 8 2015

a)S=30+32+...+32002=1+32+...+32002

=>32.S=32+34+...+32004

=>9S=32+34+...+32004

=>9S-S=(32+34+...+32004)-(1+32+...+32002)

=>8S=32004-1

=>S=\(\frac{3^{2004}-1}{8}\)

b)S=30+32+...+32002=1+32+...+32002

=(1+32+34)+...+(31998+32000+32002)

=91+....+31998.91

=91.(1+...+31998)

=7.13.(1+...+31998) chia hết cho 7

Vậy S chia hết cho 7

\(S=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{11}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{11}\right)⋮3\)

\(S=2\left(1+2+2^2\right)+...+2^{10}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{10}\right)⋮7\)

\(S=3\left(2+2^3+...+2^{11}\right)=3\cdot2\left(1+2^2+...+2^{10}\right)=6\left(1+2^2+...+2^{10}\right)⋮6\)

12 tháng 8 2016

S = 1 + 2 + 22 + 23 + ... + 220 + 221 (có 22 số; 22 chia hết cho 2)

S = (1 + 2) + (2+ 23) + ... + (220 + 221)

S = 3 + 22.(1 + 2) + ... + 220.(1 + 2)

S = 3 + 22.3 + ... + 220.3

S = 3.(1 + 22 + ... + 220) chia hết cho 3 (đpcm)

\(S=1+2+2^2+2^3+....+2^{21}\)

\(=\left(1+2\right)+2^2\left(1+2\right)+2^4\left(1+2\right)+......+2^{20}\left(1+2\right)\)

\(=\left(1+2\right)\left(1+2^2+2^4+.....+2^{20}\right)\)

\(=3\left(1+2^2+2^4+....+2^{20}\right)\)

Chia hết cho 3