Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1-3+3^2-3^3+...+3^98-3^99
=(1-3+3^2-3^3)+...+(3^96-3^97+3^98-3^99)
=-20+...+3^96(1-3+3^2-3^3)
=-20(1+...+3^96) chia hết cho -20
S=1-3+3^2-3^3+...+3^98-3^99
3S=3-3^2+3^3-3^4+...+3^99-3^100
3S+S=3-3^2+3^3-3^4+...+3^99-3^100+1-3+3^2-3^3+...+3^98-3^99
4S=-3^100+1
S=(-3^100+1):4
Ta có : S = 3 + 32 + 33 + ....+ 32007
\(\Rightarrow S=\left(3+3^2+3^3\right)+....+\left(3^{2005}+2^{2006}+2^{2007}\right)\)
\(\Rightarrow S=3\left(1+3+3^2\right)+.....+3^{2005}\left(1+3+3^2\right)\)
\(\Rightarrow S=3\cdot13+....+3^{2005}\cdot13\)
\(\Rightarrow S=13\cdot\left(3+....+2005\right)\)
\(\Rightarrow S\) chia hết cho 13
đúng nha !!!
Lời giải:
$S-1=3^2+3^3+....+3^{2002}$
$3(S-1)=3^3+3^4+..+3^{2003}$
$\Rightarrow 2(S-1)=3^{2003}-3^2$
$S=\frac{3^{2003}-9}{2}+1=\frac{3^{2003}-7}{2}$
Hiển nhiên $3^{2003}\not\vdots 7$
$\Rightarrow 3^{2003}-7\not\vdots 7$
$\Rightarrow S\not\vdots 7$
\(S=\left(3+3^{3+3^3}\right)+.....+\left(3^{97}+3^{98}+3^{99}\right)\)
\(S=39.1+39.3^3+....+39.3^{96}=>S=39\left(1+3^3+3^6+.....+3^{96}\right)\)
Vậy S chia hết cho 39
a) Ta có: \(S=5+5^2+5^3+...+5^{96}\)
\(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{93}+5^{96}\right)\)
Vì mỗi cặp của đa thức \(S\)có hai hạng tử nên tổng số cặp là: \(\frac{96}{2}=48\)( cặp )
\(\Rightarrow\)Đa thức \(S\)không dư số nào
\(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{93}+5^{96}\right)\)
\(\Leftrightarrow S=5.\left(5^0+5^3\right)+5^2\left(5^0+5^3\right)+5^3.\left(5^0+5^3\right)+...+5^{93}.\left(5^0+5^3\right)\)
\(\Leftrightarrow S=5.126+5^2.126+5^3.126+...+5^{93}.126\)
\(\Leftrightarrow S=\left(5+5^2+5^3+...+5^{93}\right).126⋮126\)
Vậy \(S⋮126\)
S=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^999+3^1000+3^1001)
S=1x(1+3+9)+3^3x(1+3+9)+...+3^999x(1+3+9)
S=1x13+3^3x13+...+3^999x13
S=13x(1+3^3+...+3^999)
Vậy S chia hết cho 13
S=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^999+3^1000+3^1001)
S=1x(1+3+9)+3^3x(1+3+9)+...+3^999x(1+3+9)
S=1x13+3^3x13+...+3^999x13
S=13x(1+3^3+...+3^999)
Vậy S chia hết cho 13