Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)
\(2A=2+2^2+2^3+...+2^{51}\)
\(2A-A=A=2^{51}-2^0\)
\(B=5+5^2+5^3+...+5^{99}+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)
\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)
\(3C+C=4C=3^{2011}+3\)
\(C=\frac{3^{2011}+3}{4}\)
\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)
\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)
\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)
\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)
\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)
A=20+21+22+23+...++23+...+250250
2�=2+22+23+...+2512A=2+22+23+...+251
2�−�=�=251−202A−A=A=251−20
�=5+52+53+...+599+5100B=5+52+53+...+599+5100
5�=52+53+54+...+5100+51015B=52+53+54+...+5100+5101
5�−�=4�=5101−55B−B=4B=5101−5
�=5101−54B=45101−5
�=3−32+33−34+...+C=3−32+33−34+...+32007−32008+32009−3201032007−32008+32009−32010
3�=32−33+34−35+...−32008+32009−32010+320113C=32−33+34−35+...−32008+32009−32010+32011
3�+�=4�=32011+33C+C=4C=32011+3
�=32011+34C=432011+3
�100=5+5×9+5×92+5×93+...+5×999S100=5+5×9+5×92+5×93+...+5×999
�100=5×(1+9+92+93+...+999)S100=5×(1+9+92+93+...+999)
9�100=5×(9+92+93+...+999+9100)9S100=5×(9+92+93+...+999+9100)
9�100−�100=8�100=5×(9100−1)9S100−S100=8S100=5×(9100−1)
�100=5×(9100−1)8S100=85×(9100−1)
\(S=2+2^2+2^3+2^4+....+2^{99}+2^{100}\)
\(S=2.\left(2+2^2\right)+.....+2^{99}.\left(2+2^2\right)\)
\(S=2.6+.....+2^{99}.6\)
\(S=6.\left(2+2^{99}\right)⋮6\)
\(\Rightarrow S⋮6\)
S=2+22+23+...+2100
S=(2+22+23+24)+...+(297+298+299+2100)
S=2x(1+2+22+23)+...+297x(1+2+22+23)
S=2x15+...+297x15
S=15x(2+...+297)
Vậy S\(⋮\)15
S=2+22+23+...+2100
=>2S=22+23+...+2101
=>S=2S-S=(22+23+...+2101)-(2+22+23+...+2100)
=>S=2101-2=225x4-2=...6-2=...4
Vậy chữ số tận cùng của S là 4
Bạn có thể tham khảo lời giải ở câu hỏi tương tự hoặc tại đây : Câu hỏi của IRON MAN HULK BUSTER - Toán lớp 6 - Học toán với OnlineMath và nếu không được thì vào link này https://olm.vn/hoi-dap/detail/85689260267.html
bạn có thể tham khảo ở đây nha: https://olm.vn/hoi-dap/detail/6942496256.html dù bạn ấy chưa k nhưng đúng rồi nha bạn
mk cx tham khảo ở đây
Sorry nha Mình chỉ giải được phần b thôi à(Nhớ tích cho mình đó)
b) S=30+31+32+33+.......+339
=(30+31+32+33)+.......+(336+337+338+339)
=30.(1+31+32+33)+.......+336.(1+31+32+33)
=30.40+........+336.40
Suy ra S chia hết cho 40
S=1+22+24+...+2100
4S=22B=22+24+26+...+2102
3B=4B-B=2102-1
=> B = \(\frac{2^{102}-1}{3}\)
S = \(2+2^2+2^3+...+2^{100}\)
2S = \(2^2+2^3+...+2^{101}\)
2S - S = \(2^{101}-1\)
S = \(2^{101}-1\)
Vì \(101\) chia \(4\) dư \(1\) có dạng \(4k+1\) nên \(2^{101}\)có tận cùng là \(2\) . Mà S = \(2^{101}-1\)nên S có tận cùng là \(1\)
S = \(2+2^2+2^3+...+2^{100}\)
S = \(\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
S = \(2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
S = \(3.5.\left(2+2^5+...+2^{97}\right)\)chia hết cho \(3\) và\(5\)
2S=2^2+2^3+....+2^2015+2^2016
=>2S-S=2^2016-2
=>S=2^2016-2 vậy S=2^2016-2
tick nha
2S=22+23+...+22016
2S-S=22+23+...+22016-2-22-...-22015
S=22016-2
a)Ta có: S=1.2.22.23…2100
=>S=20+1+2+3+…+100
=>S=25050
b)Ta có: S=25050=22525.2=(22525)2 là só chính phương
Vậy S là số chính phương
\(S=2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2S=2^2+2^3+....+2^{101}\)
\(\Rightarrow S=2^{101}-2\)
\(S=2^1+2^2+...+2^{99}+2^{100}\)
\(\Leftrightarrow2S=2^2+...+2^{101}\)
\(\Leftrightarrow S=2^{101}-2\)