\(S_1=1+\frac{1}{5}\), \(S_2=1+\frac{1}{5}+\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2015

Khi \(n=1\to A=\frac{1}{5S_1^2}=\frac{5}{36}<\frac{35}{36}.\)  Ta xét trường hợp \(n\ge2.\)

Theo giả thiết thì \(S_k=S_{k-1}+\frac{1}{5^k}>S_{k-1}\to S^2_k>S_k\cdot S_{k-1}\).

Vậy ta có \(\frac{1}{5^kS_k^2}<\frac{1}{5^kS_kS_{k-1}}=\frac{S_k-S_{k-1}}{S_kS_{k-1}}=\frac{1}{S_{k-1}}-\frac{1}{S_k}.\)   Cho \(k=2,3,\ldots,n\)  rồi cộng lại ta được

\(A<\frac{1}{5S_1^2}+\left(\frac{1}{S_1}-\frac{1}{S_2}\right)+\left(\frac{1}{S_2}-\frac{1}{S_3}\right)+\cdots+\left(\frac{1}{S_{n-1}}-\frac{1}{S_n}\right)\)

\(=\frac{1}{5S_1^2}+\frac{1}{S_1}-\frac{1}{S_n}<\frac{1}{5S_1^2}+\frac{1}{S_1}=\frac{5}{36}+\frac{5}{6}=\frac{35}{36}.\)   (ĐPCM)

 

3 tháng 10 2020

a) Ta có: \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)

\(=\left(-\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)

\(=-2+2\sqrt{5}-\sqrt{5}\)

\(=-2+\sqrt{5}\)

3 tháng 10 2020

b) \(\left(\frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2}\sqrt{2}+\frac{4}{5}\sqrt{200}\right)\div\frac{1}{8}\)

\(=\left(\frac{\sqrt{2}}{4}-\frac{3\sqrt{2}}{2}+8\sqrt{2}\right)\cdot8\)

\(=\frac{27\sqrt{2}}{4}\cdot8\)

\(=54\sqrt{2}\)

4 tháng 8 2020

Bài 1 :

\(6xy\cdot\sqrt{\frac{9x^2}{16y^2}}=6xy\cdot\frac{3x}{4y}=\frac{18x^2y}{4y}=\frac{9}{2}x^2\)

\(\sqrt{\frac{4+20a+25a^2}{b^4}}=\sqrt{\frac{\left(2+5a\right)^2}{\left(b^2\right)^2}}=\frac{2+5a}{b^2}\)

\(\left(m-n\right).\sqrt{\frac{m-n}{\left(m-n\right)^2}}=\sqrt{\left(m-n\right)^2}\cdot\sqrt{\frac{1}{m-n}}=\sqrt{\frac{\left(m-n\right)^2}{m-n}}=\sqrt{m-n}\)

Bài 2 : 

1. \(\left(2\sqrt{3}-\sqrt{12}\right):5\sqrt{3}=\left(2\sqrt{3}-2\sqrt{3}\right):5\sqrt{3}=0:5\sqrt{3}=0\)

2. \(\sqrt{\frac{317^2-302^2}{1013^2-1012^2}}=\frac{\sqrt{\left(317+302\right)\left(317-302\right)}}{\sqrt{\left(1013+1012\right)\left(1013-1012\right)}}=\frac{\sqrt{619}\cdot\sqrt{15}}{\sqrt{2025}}=\sqrt{\frac{619}{135}}\)(check lại)

3. \(\sqrt{27\left(1-\sqrt{3}\right)^2}:3\sqrt{75}\)

\(=\sqrt{27}\left(1-\sqrt{3}\right):15\sqrt{3}\)

\(=3\sqrt{3}\left(1-\sqrt{3}\right):15\sqrt{3}\)

\(=\frac{1-\sqrt{3}}{5}\)

4.\(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}}+\sqrt{5}\right):2\sqrt{5}\)

\(=\left(\frac{5}{\sqrt{5}}+\frac{\sqrt{20}}{2}-\frac{\frac{5}{4}\cdot2}{\sqrt{5}}+\sqrt{5}\right):2\sqrt{5}\)

\(=\left(\sqrt{5}+\frac{2\sqrt{5}}{2}-\frac{\frac{5}{2}}{\sqrt{5}}+\sqrt{5}\right):2\sqrt{5}\)

\(=\left(\sqrt{5}+\sqrt{5}+\frac{\sqrt{5}}{2}+\sqrt{5}\right):2\sqrt{5}\)

\(=\frac{7}{2}\sqrt{5}:2\sqrt{5}\)

\(=\frac{7}{4}\)

7 tháng 9 2021

mấy bài này thì bạn cứ đặt ẩn phụ cho dễ nhìn hơn mà giải nhé 

a, \(\hept{\begin{cases}\frac{1}{2x-y}+x+3y=\frac{3}{2}\\\frac{4}{2x-y}-5\left(x+3y\right)=-3\end{cases}}\)ĐK : \(2x\ne y\)

Đặt \(\frac{1}{2x-y}=t;x+3y=u\)hệ phương trình tương đương 

\(\hept{\begin{cases}t+u=\frac{3}{2}\\4t-5u=-3\end{cases}\Leftrightarrow\hept{\begin{cases}4t+4u=6\\4t-5u=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}9u=9\\4t=-3+5u\end{cases}}\Leftrightarrow\hept{\begin{cases}u=1\\t=\frac{-3+5}{4}=\frac{1}{2}\end{cases}}}\)

Theo cách đặt \(\hept{\begin{cases}x+3y=1\\\frac{1}{2x-y}=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=1\\2x-y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+6y=2\\2x-y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}7y=4\\x=\frac{y+2}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{4}{7}\\x=\frac{9}{7}\end{cases}}}\)

Vậy hệ pt có một nghiệm (x;y) = (9/7;4/7) 

22 tháng 7 2017

a, \(\frac{1}{\left(\sqrt{3}+\sqrt{2}\right)^2}\) +\(\frac{1}{\left(\sqrt{3}-\sqrt{2}\right)^2}\) =\(\frac{\left(\sqrt{3}+\sqrt{2}\right)^2+\left(\sqrt{3}-\sqrt{2}\right)^2}{\left(\sqrt{3}+\sqrt{2}\right)^2\left(\sqrt{3}-\sqrt{2}\right)^2}\) 

                                                                         \(=\frac{10}{1}=10\)

mấy câu còn lại bạn tự làm nốt nhé mk ban rồi 

22 tháng 7 2017

Câu bạn trả lời ở đâu v 

1 tháng 4 2020

a) \(\sqrt{17}-4\) b) \(\sqrt{3}\) c) \(\frac{\sqrt{2}}{2}\) d)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) e) \(x-\sqrt{5}\)

f) \(4+2\sqrt{3}\) g) \(3+2\sqrt{2}\) h) \(x+\sqrt{x}+1\) i) \(\frac{3\sqrt{5}-\sqrt{15}}{10}\)

k) \(\sqrt{5}+\sqrt{6}\) i) 5 h) 0 l) \(\sqrt{5}+\sqrt{3}\) m) \(\frac{20\sqrt{3}}{3}\) d) 0

1 tháng 4 2020

ban ơi ccachs làm

AH
Akai Haruma
Giáo viên
15 tháng 3 2019

Lời giải:
\(A=\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{48}\right)-\left(\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)\)

\(=2\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{48}\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+..+\frac{1}{24}-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}\right)\)

\(=1-\left(\frac{1}{25}+\frac{1}{26}+...+\frac{1}{49}\right)\)

Chứng minh vế đầu:

Ta thấy:

\(\frac{1}{25}+\frac{1}{26}+...+\frac{1}{49}> \frac{1}{49}+\frac{1}{49}+...+\frac{1}{49}=\frac{25}{49}>\frac{25}{50}=\frac{1}{2}\)

\(\Rightarrow A=1-\left(\frac{1}{25}+\frac{1}{26}+...+\frac{1}{49}\right)< 1-\frac{1}{2}=\frac{1}{2}\) (đpcm)

-------------------------

Vế sau sai, tính cụ thể thì $A< \frac{2}{5}$

13 tháng 10 2019

\(\frac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)

\(=\frac{\sqrt{35}.(5\sqrt{7}-7\sqrt{5}+2\sqrt{70})}{\sqrt{35}.\sqrt{35}}\)

\(=\frac{\sqrt{35}.(5\sqrt{7}-7\sqrt{5}+2\sqrt{70})}{35}\)

13 tháng 10 2019

\(\sqrt{\frac{4}{3}}+\sqrt{12}-\frac{4}{3}\sqrt{\frac{3}{4}}\)

\(=\frac{\sqrt{4}}{\sqrt{3}}+\sqrt{12}-\frac{4}{3}\cdot\frac{\sqrt{3}}{\sqrt{4}}\)

\(=\frac{2\sqrt{3}}{\sqrt{3}.\sqrt{3}}+\sqrt{12}-\frac{4}{3}\cdot\frac{\sqrt{3}}{2}\)

\(=\frac{2\sqrt{3}}{3}+2\sqrt{3}-\frac{2\sqrt{3}}{3}\)

\(=2\sqrt{3}\left(\frac{1}{3}+1-\frac{1}{3}\right)\)

\(=2\sqrt{3}\)