Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C M H N
Ta có:
BM=BA
=> Tam giác ABM cân tại B
=> \(\widehat{BAM}=\widehat{BMA}\)
mà \(\widehat{BAM}+\widehat{MAC}=90^o\)
=> \(\widehat{BMA}+\widehat{MAC}=90^o\)
mặt khác \(\widehat{HMA}+\widehat{HAM}=90^o\)
=> \(\widehat{HAM}=\widehat{MAC}\)(1)
Ta có: AH=AN (2)
AM chung (3)
=>Tam giác AHM=ANM
=> \(\widehat{ANM}=\widehat{AHM}=90^o\)
=> AC vuông MN
b) => Tam giác MNC vuông tại N có cạnh huyền MC
=> MC>NC
=> AN+BC=BM+MC+AN=AB+MC+AN>AB+NC+AN=AB+BC
=> dpcm
Cho tam giác ABC có vuông tại A AH vuông góc BC cmr AH+BC>AB +AC

Câu hỏi của Bỉ Ngạn Hoa - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
5234kg....................tạ
6005dm2...............m2
4027mm.....................m ...................mm
4,25tan....................kg
32,9km2......................hm2
68dm2....................m2

a: Xét ΔAHM và ΔADM có
AH=AD
\(\hat{HAM}=\hat{DAM}\)
AM chung
Do đó: ΔAHM=ΔADM
=>\(\hat{AHM}=\hat{ADM}\)
=>\(\hat{ADM}=90^0\)
=>MD⊥BA tại D
b: Ta có: \(\hat{BAN}+\hat{CAN}=\hat{BAC}=90^0\)
\(\hat{BNA}+\hat{HAN}=90^0\) (ΔNHA vuông tại H)
mà \(\hat{CAN}=\hat{HAN}\) (AN là phân giác của góc HAC)
nên \(\hat{BAN}=\hat{BNA}\)
=>ΔBAN cân tại B
=>BA=BN
c:
ta có: \(\hat{CAM}+\hat{BAM}=\hat{CAB}=90^0\)
\(\hat{CMA}+\hat{HAM}=90^0\) (ΔHAM vuông tại H)
mà \(\hat{BAM}=\hat{HAM}\) (AM là phân giác của góc HAB)
nên \(\hat{CAM}=\hat{CMA}\)
=>CA=CM
AB+AC-BC
=BN+CM-BC
=BM+MN+CN+NM-BM-MN-CN
=MN

a: Xét ΔBAD và ΔBED có
BA=BE
\(\hat{ABD}=\hat{EBD}\) (BD là phân giác của góc ABE)
BD chung
Do đó: ΔBAD=ΔBED
=>DA=DE
b: ΔBAD=ΔBED
=>\(\hat{BAD}=\hat{BED}\)
=>\(\hat{BED}=90^0\)
=>DE⊥BC
mà AH⊥BC
nên DE//AH
c: Xét ΔMHA và ΔMDK có
MH=MD
\(\hat{MHA}=\hat{MDK}\) (hai góc so le trong, HA//DK)
HA=DK
Do đó: ΔMHA=ΔMDK
=>\(\hat{HMA}=\hat{DMK}\)
mà \(\hat{HMA}+\hat{AMD}=180^0\) (hai góc kề bù)
nên \(\hat{AMD}+\hat{DMK}=180^0\)
=>A,M,K thẳng hàng
Chúng ta sẽ giải từng câu hỏi trong bài toán này.
Câu a) Chứng minh ∆ABD = ∆EBD và AD = ED
- Điều kiện:
- ∆ABC vuông tại A (AB < AC).
- Tia phân giác của góc B cắt AC tại D.
- Trên cạnh BC lấy điểm E sao cho BE = BA.
- Vẽ AH BC tại H.
- Chứng minh:
- Xét các tam giác ∆ABD và ∆EBD:
Vậy, theo Tiêu chuẩn góc-cạnh-góc (Axiom SAS), ta có:
\(\Delta A B D = \Delta E B D\) - Cả hai tam giác ∆ABD và ∆EBD có cạnh chung BD.
- AB = BE (do đề bài cho BE = BA).
- Góc ABD = Góc EBD (vì tia BD là tia phân giác của góc ABC, nên hai góc này bằng nhau).
- Kết luận AD = ED:
- Do ∆ABD = ∆EBD (theo chứng minh trên), nên các cạnh tương ứng của hai tam giác này cũng bằng nhau.
- Vậy, AD = ED.
Câu b) Chứng minh AH // DE
- Xét đoạn AH và DE:
- Từ điều kiện bài toán, chúng ta có điểm H là giao điểm của đường vuông góc AH với cạnh BC, tức là AH ⊥ BC.
- Tia DE được dựng sao cho DE là một đoạn thẳng trong cùng một mặt phẳng với BC, và điểm D là điểm phân giác của góc B.
- Chứng minh AH // DE:
- Vì ∆ABD = ∆EBD (chứng minh ở câu a) nên các góc tương ứng của hai tam giác này cũng bằng nhau. Đặc biệt, ∠BAD = ∠BED.
- Ta có AH ⊥ BC và ∠BAD = ∠BED. Do đó, theo tính chất của góc tạo thành giữa đường vuông góc và đoạn thẳng, ta suy ra rằng AH // DE.
Câu c) Chứng minh A, M, K thẳng hàng
- Định nghĩa các điểm:
- Trên tia DE, lấy điểm K sao cho DK = AH.
- M là trung điểm của DH, tức là:
\(\text{DM} = \text{MH}\)
- Chứng minh A, M, K thẳng hàng:
- Ta đã biết rằng AH // DE, và từ câu b) đã chứng minh rằng AH và DE song song.
- M là trung điểm của DH, tức là DM = MH. Đồng thời, ta có DK = AH (theo giả thiết).
- Vì AH // DE và M là trung điểm của DH, ta có thể sử dụng tính chất của các đường trung tuyến trong tam giác vuông để suy ra rằng các điểm A, M, K nằm trên cùng một đường thẳng.
Kết luận:
- a) ∆ABD = ∆EBD và AD = ED.
- b) AH // DE.
- c) A, M, K thẳng hàng.

A B C E K H M
Xét \(\Delta ABM\)và \(\Delta EBM\)có:
AB = EB(gt)
BM chung
AM = EM(gt)
\(\Rightarrow\Delta ABM=\Delta EBM\left(c.c.c\right)\)
\(\Rightarrow\widehat{ABM}=\widehat{EBM}\)(đpcm)
Bạn xem lại đề nhé!
Cho ABC vuông tại A; có AB 10cm; BC = 26cm.
a. Tính chu vi tam giác ABC.
b. Vẽ AH ⊥ BC (H BC). Trên cạnh BC lấy điểm E sao cho BE = BA. Kẻ EK ⊥ AC
(K AC). Chứng minh: EA là phân giác góc BEK ̂.
c. Chứng minh: AHK cân.
d. Gọi M là trung điểm HK. Chứng minh H; K; M thẳng hàng.