Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
- Thay x=0 vào P(x) ta được:
P(0)=d => d là số lẻ.
- Thay x=1 vào P(x) ta được:
P(1)=a+b+c+d =>a+b+c+d là số lẻ mà d lẻ nên a+b+c là số chẵn.
- Gọi e là nghiệm của P(x), thay e vào P(x) ta được:
P(e)=ae3+be2+ce+d=0
=>ae3+be2+ce=-d
=>e(ae2+be+c)=-d
=>e=\(\dfrac{-d}{ae^2+be+c}\).
Ta thấy: -d là số lẻ, ae2+be+c là số chẵn nên -d không thể chia hết cho
ae2+be+c.
- Vậy P(x) không thể có nghiệm là số nguyên.
Q(-3) = -27a +9b-3x+d
Q(1) = a+b+c+d
ta có Q (-3) +Q(1) = -26a+10b-2c+2d
= -2 ( 13a+c) + 2(5b+d) (1)
mà 13a+c = 5b+d (2)
từ (1) (2) => Q(-3) + Q(1) = 0
VẬY .......
b) Cho f(x)=ax3+bx2+cx+d , trong đó a,b,c,d là hằng số và thoả mãn: b=3a+c, Chứng tỏ rằng: f(1)=f(2)
Thay b = 3a + c vào f(x) ta được:
f(x) = ax3 + (3a+c)x2 + cx + d
⇒ f(1) = a.13 + 3a + c.12+ c.1 + d
= a + 3a + c + c + d
= 4a + 2c + d
= 4a + 2c + d (1)
f(2) = a.23 + 3a + c.22 - c.2 + d
= 8a + 3a + 4c - 2c + d
= 4a + 2c + d (2)
Từ (1) và (2) ➩ f(1) = f(2) [= 4a + 2 + d]
Lời giải:
$P(0)=d$ lẻ
$P(1)=a+b+c+d$ lẻ, mà $d$ lẻ nên $a+b+c$ chẵn. Do đó 3 số này có thể nhận giá trị lẻ, lẻ, chẵn hoặc chẵn, chẵn, chẵn.
Giả sử $P(x)$ có nghiệm nguyên $m$. Khi đó:
$P(m)=am^3+bm^2+cm+d$
Nếu $m$ chẵn thì $am^3+bm^2+cm+d$ lẻ cho $d$ lẻ nên $P(m)\neq 0$
Nếu $m$ lẻ: Do $a,b,c$ nhận giá trị lẻ, chẵn, chẵn hoặc chẵn, chẵn, chẵn nên $am^3+bm^2+cm$ đều chẵn. Kéo theo $P(m)=am^3+bm^2+cm+d$ lẻ
$\Rightarrow P(m)\neq 0$
Tóm lại $P(m)\neq 0$
$\Rightarrow x=m$ không là nghiệm của $P(x)$. Do đó điều giả sử là sai.
Ta có đpcm.
Bạn nào biết giải thì comment nhanh lên ạ . Ai comment nhanh nhất thì mình sẽ k cho ( nhưng phải hợp lý một chút ạ )
Tính độ dài OM dùng định lý Pytago : \(OM^2=3^2+1^2\)
Từ đó tính ra OM. Mình làm sai à?
Thay b=3a+c vào f(x) ta được:
f(x)=ax3+(3a+c)x2+cx+d
=ax3+3ax2+cx2+cx+d
Suy ra: f(1).f(2)=(a.13+3a.12+c.12+c.1+d)[a.(-2)3+3a.(-2)2+c.(-2)2+c.(-2)+d]
=(a+3a+c+c+d)(-8a+12a+4c-2c+d)
=(4a+2c+d)(4a+2c+d)
=(4a+2c+d)2
Mà a,b,c,d là số nguyên nên: f(1).f(2) là bình phương của 1 số nguyên
1. Do góc BOC kề bù với góc AOB
=> Tia OA và tia OC đối nhau
Do góc AOD và góc AOB kề bù
=> tia OD và tia OB đối nhau
=> góc BOC và góc AOD là 2 góc đối đỉnh
Gọi OM, ON là 2 tia phân giác góc AOD và góc BOC
=> góc AOM = 1/2 góc AOD = 1/2 (180* - 135*) = 45*/2
mà góc AON = góc AOB + góc BON
=> góc AON = 135* + 45*/2
=> góc AOM + góc AON = 135* + 45*/2 + 45*/2 = 180*
=> góc MON = 180*
=> OM , ON là 2 tia đối nhau
Cậu theo đường link này nhé: Câu hỏi của Trương Mạnh - Toán lớp 7 | Học trực tuyến