\(x+\sqrt{x}+1\)

tìm x thuộc Z để \(\dfrac{3Q}{\sqrt...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

1) +) ta có : \(C-\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{3}=\dfrac{3\sqrt{x}-x+\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{-\left(x-4\sqrt{x}+4\right)+3}{3\left(x+\sqrt{x}+1\right)}=\dfrac{-\left(\sqrt{x}-2\right)^2+3}{3\left(x+\sqrt{x}+1\right)}\)

không thể cm được đâu bn --> xem lại đề

2) +) ta có : \(D=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)

--> để \(D\in Z\Leftrightarrow\sqrt{x}+2\) là ước của 3 \(\Leftrightarrow\sqrt{x}+2\in\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow x=1\) vậy \(x=1\)

3) +) tương tự 2)

4) a) +) điều kiện xác định : \(x>0;x\ne4\)

ta có : \(A=\left(\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}-2}{x+3\sqrt{x}}\)

\(\Leftrightarrow A=\left(\dfrac{2\sqrt{x}-\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)

b) ta có : \(A=3\Leftrightarrow\dfrac{\sqrt{x}-3}{\sqrt{x}-2}=3\Leftrightarrow\sqrt{x}-3=3\sqrt{x}-6\)

\(\Leftrightarrow2\sqrt{x}=3\Leftrightarrow\sqrt{x}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{9}{4}\) vậy \(x=\dfrac{9}{4}\)

c) ta có : \(B=A.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{x-9}{x-4}=1-\dfrac{5}{x-4}\)

tương tự 2 )
\(\)

30 tháng 9 2018

ĐKXĐ:\(x>0,x\ne4\)

\(M=\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{2}{\sqrt{x}}\right)\)

\(M=\left(\dfrac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\dfrac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(M=\dfrac{4\sqrt{x}}{\left(2-\sqrt{x}\right)}\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)

\(M=\dfrac{4x}{\sqrt{x}-3}\)

a: ĐKXĐ: x>=0; x<>1

b: \(P=\dfrac{3+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)

c: Để \(P=\dfrac{5}{4}\) thì \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}=\dfrac{5}{4}\)

\(\Leftrightarrow5\sqrt{x}-5=4\sqrt{x}+8\)

hay x=169

13 tháng 12 2016

a) Điều kiện \(\begin{cases}x\ge0\\x-1\ne0\end{cases}\Leftrightarrow\begin{cases}x\ge0\\x\ne1\end{cases}}\)
Chú ý: x\(\ge0\) nên \(\sqrt{x}+1;4\sqrt{x}+4\) luôn khác 0

30 tháng 6 2017

\(Q=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)

\(Q=\dfrac{2\sqrt{x}-9-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\dfrac{2\sqrt{x}-9-\left(x-9\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(Q=\dfrac{2\sqrt{x}-9-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\dfrac{2\sqrt{x}-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\dfrac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(Q=\dfrac{-\sqrt{x}}{\sqrt{x}-3}\)

7 tháng 8 2017

1, Để Q\(\in\)Z thì \(\dfrac{-1}{\sqrt{x}-3}\in Z\) khi đó \(\left[{}\begin{matrix}\sqrt{x}-3=1\\\sqrt{x}-3=-1\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}\sqrt{x}=4\\\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=16\\x=4\end{matrix}\right.\)\(\in Z\)(thỏa mãn)

vậy x\(\in\left\{16,4\right\}\)thì Q\(\in\)Z

2, Để Q\(\in\)Z thì \(\dfrac{\sqrt{x}-2}{3\sqrt{x}-4}\in Z\) khi đó \(\sqrt{x}-2⋮3\sqrt{x}-4\)

<=> 3\(\sqrt{x}\)- 6\(⋮\) 3\(\sqrt{x}\)-4 <=> 3\(\sqrt{x}\)- 4-2 \(⋮\) 3\(\sqrt{x}\)- 4 <=> -2 \(⋮\) 3\(\sqrt{x}\)- 4

=> 3\(\sqrt{x}\)- 4 \(\in\)Ư(-2) Mà Ư(-2) =\(\left\{\pm1,\pm2\right\}\)

+ Với 3\(\sqrt{x}\)- 4 = 1 => 3\(\sqrt{x}\) =5 => \(\sqrt{x}\)= 5/3 =>x =25/9 \(\notin\)Z (loại)

+ Với 3\(\sqrt{x}\)- 4 =-1 => 3\(\sqrt{x}\) =3 => x=1 (thỏa mãn x thuộc Z )

+ Với 3\(\sqrt{x}\)- 4 =2 => 3\(\sqrt{x}\) =6 => \(\sqrt{x}\)=2=>x=4 (thỏa mãn x thuộc Z )

+ Với 3\(\sqrt{x}\)- 4 =-2 => 3\(\sqrt{x}\) =2=> \(\sqrt{x}\)=2/3=>x=4/9(loại vì x ko thuộc Z )

Vậy x \(\in\left\{1,4\right\}\)thì Q đạt giá trị nguyên .

7 tháng 8 2017

câu b, bạn có thể khi tìm ra x rồi thay lại vào Q để thử coi Q có thuộc Z ko vì biểu thức khi xét có nhân thêm 3 nên dẫn đến có chênh lệch số .

22 tháng 8 2017

1) điều kiện \(x\ge0;x\ne\dfrac{1}{49}\)

\(Q=\dfrac{\sqrt{x}+4}{1-7\sqrt{x}}+\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{24\sqrt{x}}{7x+6\sqrt{x}-1}\)

\(Q=\dfrac{-\sqrt{x}-4}{7\sqrt{x}-1}+\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{24\sqrt{x}}{\left(7\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(Q=\dfrac{\left(-\sqrt{x}-4\right)\left(\sqrt{x}+1\right)+\left(\sqrt{x}-2\right)\left(7\sqrt{x}-1\right)+24\sqrt{x}}{\left(7\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(Q=\dfrac{-x-\sqrt{x}-4\sqrt{x}-4+7x-\sqrt{x}-14\sqrt{x}+2+24\sqrt{x}}{\left(7\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(Q=\dfrac{6x+4\sqrt{x}-2}{\left(7\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(6\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(7\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}\)

9 tháng 8 2021

a, Với \(x\ge0;x\ne1\)

\(B=\frac{1}{\sqrt{x}-1}=2\Rightarrow2\sqrt{x}-2=1\Leftrightarrow2\sqrt{x}-3=0\Leftrightarrow x=\frac{9}{4}\)

b, Ta có : \(A.B=\frac{x+3}{\sqrt{x}+1}.\frac{1}{\sqrt{x}-1}=\frac{x+3}{x-1}=\frac{x-1+4}{x-1}=1+\frac{4}{x-1}\)

\(\Rightarrow x-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

x - 11-12-24-4
x203-15-3

c, Ta có : \(A=\frac{x+3}{\sqrt{x}+1}\le3\Leftrightarrow\frac{x+3}{\sqrt{x}+1}-3\le0\)

\(\Leftrightarrow\frac{x-3\sqrt{x}}{\sqrt{x}+1}\le0\Rightarrow\sqrt{x}-3\le0\Leftrightarrow x\le9\)

Kết hợp với đk vậy 0 =< x =< 9 

27 tháng 5 2016

\(B=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{3\left(\sqrt{x}-1\right)}{x-5\sqrt{x}+6}\left(ĐKXĐ:x\ne4;x\ne9;x\ge0\right)\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x-4-\left(x-2\sqrt{x}-3\right)-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{2-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{1}{3-\sqrt{x}}\)

 \(B< -1\)\(\Leftrightarrow\) \(\frac{1}{3-\sqrt{x}}< -1\)\(\Rightarrow\sqrt{x}-3< 1\Leftrightarrow x< 16\)

Mặt khác : Vì \(B< -1< 0\)nên \(3-\sqrt{x}< 0\Rightarrow x>9\)

Vậy để \(B< -1\)thì \(9< x< 16\)

\(2B\in Z\Leftrightarrow B\in Z\)

\(\Leftrightarrow\frac{1}{3-\sqrt{x}}\in Z\)=> \(3-\sqrt{x}\inƯ\left(1\right)\)

\(\Rightarrow3-\sqrt{x}\in\left\{-1;1\right\}\)\(\Rightarrow x\in\left\{16\right\}\)( Loại x = 4 vì không thoả mãn điều kiện)

27 tháng 5 2016

Xin lỗi vì để bài mình ghi lộn :))

Còn lại thì ổn rồi :))