\(\dfrac{x^{2^{ }}-1}{x^{2^{ }}+2x+1}\)- \(\dfrac{1}{x+1}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 11 2018

ĐK: \(x\ne1;x\ne-1\)

\(Q=\left(\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)^2}-\dfrac{1}{\left(x+1\right)}+\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}\right)\left(x-1\right)\left(x+1\right)\)

\(Q=\left(\dfrac{x-1}{x+1}-\dfrac{1}{x+1}+\dfrac{x+1}{x-1}\right)\left(x-1\right)\left(x+1\right)\)

\(Q=\left(x-1\right)^2-\left(x-1\right)+\left(x+1\right)^2\)

\(Q=x^2-2x+1-x+1+x^2+2x+1=2x^2-x+3\)

c/ \(Q=2\left(x^2-\dfrac{1}{2}x\right)+3=2\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)-\dfrac{1}{8}+3\)

\(Q=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{23}{8}\ge\dfrac{23}{8}\)

\(\Rightarrow Q_{min}=\dfrac{23}{8}\) khi \(x=\dfrac{1}{4}\)

21 tháng 11 2018

a) ĐKXĐ: \(x\ne\mp1\)

\(Q=\dfrac{x^2}{x^4-1}\left(x^2-1\right)-\dfrac{1}{x^2+1}\)

\(Q=\dfrac{x^2}{\left(x^2-1\right)\left(x^2+1\right)}\left(x^2-1\right)-\dfrac{1}{x^2+1}\)

\(Q=\dfrac{x^2}{x^2+1}-\dfrac{1}{x^2+1}=\dfrac{x^2-1}{x^2+1}\)

b) \(Q=0\Rightarrow\dfrac{x^2-1}{x^2+1}=0\\ \Leftrightarrow x^2=1\\ \Leftrightarrow x=\mp1\left(loại\right)\)

Không tồn tại x để Q=0

d) \(Q=\dfrac{x^2-1}{x^2+1}=\dfrac{x^2+1-2}{x^2+1}=1-\dfrac{2}{x^2+1}\)

Ta có: \(x^2\ge0\Leftrightarrow x^2+1\ge1\\ \Leftrightarrow-\dfrac{2}{x^2+1}\ge-\dfrac{2}{1}=-2\\ 1-\dfrac{2}{x^2+1}\ge-1\\ Q\ge-1\)

Vậy GTNN của Q=-1 <=> x=0

a: ĐKXĐ: \(x\notin\left\{1;-1;0\right\}\)

b: \(A=\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{5\left(x-1\right)}{2x}=\dfrac{20\left(x-1\right)}{2x}=\dfrac{10\left(x-1\right)}{x}\)

c: Khi x=3,5 thì \(A=\dfrac{10\cdot2.5}{3.5}=\dfrac{25}{3.5}=\dfrac{50}{7}\)

d: Để A=4 thì 10x-10=4x

=>6x=10

=>x=5/3

6 tháng 7 2018
https://i.imgur.com/FxNb3Xk.jpg
6 tháng 7 2018

bn chụp rõ hơn hộ mk đc ko, nó tối quá

28 tháng 4 2018

câu nào cũng ghi lại đề nha

a) \(x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

b)\(x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

c) \(\left(x+1\right)\left(x+2\right)+\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+1+x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{2}\end{matrix}\right.\)

28 tháng 4 2018

d) \(\dfrac{1}{x-2}+3-\dfrac{3-x}{x-2}=0\)

\(\Leftrightarrow\dfrac{1+3\left(x-2\right)-\left(3-x\right)}{x-2}=0\)

\(\Leftrightarrow\dfrac{1+3x-6-3+x}{x-2}=0\) ( đk \(x\ne2\) )

\(\Leftrightarrow4x-8=0\Rightarrow x=2\)

đ) \(\dfrac{8-x}{x-7}-8-\dfrac{1}{x-7}=0\)

\(\Leftrightarrow\dfrac{8-x-8\left(x-7\right)-1}{x-7}=0\) (đk \(x\ne7\))

\(\Leftrightarrow8-x-8x+56-1=0\)

\(\Leftrightarrow-9x+63=0\)

\(\Leftrightarrow x=7\)

30 tháng 4 2018

4)a)\(\dfrac{x+5}{x-5}-\dfrac{x-5}{x+5}=\dfrac{20}{x^2-25}\)(1)

ĐKXĐ:\(\left\{{}\begin{matrix}x-5\ne0\\x+5\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne5\\x\ne-5\end{matrix}\right.\)

(1)\(\Rightarrow\left(x+5\right)\left(x+5\right)-\left(x-5\right)\left(x-5\right)=20\)

\(\Leftrightarrow x^2+10x+25-\left(x^2-10x+25\right)=20\)

\(\Leftrightarrow x^2+10x+25-x^2+10x-25=20\)

\(\Leftrightarrow x^2-x^2+10x+10x=-25+25=20\)

\(\Leftrightarrow20x=20\)

\(\Leftrightarrow x=1\left(nh\text{ậ}n\right)\)

S=\(\left\{1\right\}\)

30 tháng 4 2018

mấy bài còn lại dễ ẹt cứ bình tĩnh làm là ok

1, Thực hiện phép tính : a, \(\dfrac{2x+4}{10}\) + \(\dfrac{2-x}{15}\) b, \(\dfrac{3x}{10}\) + \(\dfrac{2x-1}{15}\) + \(\dfrac{2-x}{20}\) c, \(\dfrac{x+1}{2x-2}\) + \(\dfrac{x^2+3}{2-2x^2}\) d, \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\) e, \(\dfrac{x}{xy-y^2}\) + \(\dfrac{2x-y}{xy-x^2}\) f, \(\dfrac{x^2}{x^2-4x}\) + \(\dfrac{6}{6-3x}\) +\(\dfrac{1}{x+2}\) g, \(\dfrac{2x^2-10xy}{2xy}\) + \(\dfrac{5y-x}{y}\) + \(\dfrac{x+2y}{x}\) h, \(\dfrac{2}{x+y}\)...
Đọc tiếp

1, Thực hiện phép tính :

a, \(\dfrac{2x+4}{10}\) + \(\dfrac{2-x}{15}\)

b, \(\dfrac{3x}{10}\) + \(\dfrac{2x-1}{15}\) + \(\dfrac{2-x}{20}\)

c, \(\dfrac{x+1}{2x-2}\) + \(\dfrac{x^2+3}{2-2x^2}\)

d, \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\)

e, \(\dfrac{x}{xy-y^2}\) + \(\dfrac{2x-y}{xy-x^2}\)

f, \(\dfrac{x^2}{x^2-4x}\) + \(\dfrac{6}{6-3x}\) +\(\dfrac{1}{x+2}\)

g, \(\dfrac{2x^2-10xy}{2xy}\) + \(\dfrac{5y-x}{y}\) + \(\dfrac{x+2y}{x}\)

h, \(\dfrac{2}{x+y}\) +\(\dfrac{1}{x-y}\) + \(\dfrac{-3x}{x^2-y^2}\)

i, x+y+ \(\dfrac{x^2+y^2}{x+y}\)

2, Thực hiện phép tính :

a, \(\dfrac{2x}{x^2+2xy}\) + \(\dfrac{y}{xy-2y^2}\)+ \(\dfrac{4}{x^2-4y^2}\)

b, \(\dfrac{1}{x-y}\) + \(\dfrac{3xy}{y^3-x^3}\) + \(\dfrac{x-y}{x^2+xy+y^2}\)

c, \(\dfrac{2x+y}{2x^2-xy}\) + \(\dfrac{16x}{y^2-4x^2}\) + \(\dfrac{2x-y}{2x^2+xy}\)

d, \(\dfrac{1}{1-x}\) +\(\dfrac{1}{1+x}\) + \(\dfrac{2}{1+x^2}\) + \(\dfrac{4}{1+x^4}\) + \(\dfrac{8}{1+x^8}\)+ \(\dfrac{16}{1+x^{16}}\)

1
13 tháng 11 2017

Bài 2 .

a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)

\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{2x^2y-2xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{3x^2y+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

b) Sai đề hay sao ý

c) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)

\(=\dfrac{2x+y}{x\left(2x-y\right)}+\dfrac{-16x}{\left(2x-y\right)\left(2x+y\right)}+\dfrac{2x-y}{x\left(2x+y\right)}\)

\(=\dfrac{\left(2x+y\right)^2-16x^2+\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{4x^2+4xy+y^2-16x^2+4x^2-4xy+y^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{-8x^2}{x\left(2x-y\right)\left(2x+y\right)}\)

d) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

.....

\(=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{32}{1-x^{32}}\)

14 tháng 1 2019

a) \(\frac{6-x}{3}-\frac{x}{4}=\frac{3+2x}{2}-1\)

\(\frac{4\left(6-x\right)}{12}-\frac{3x}{12}=\frac{3+2x}{2}-\frac{2}{2}\)

\(\frac{24-4x-3x}{12}=\frac{3+2x-2}{2}\)

\(\frac{24-7x}{12}=\frac{2x+1}{2}\)

\(\Rightarrow2\left(24-7x\right)=12\left(2x+1\right)\)

\(\Rightarrow48-14x=24x+12\)

\(\Rightarrow24x+14x=48-12\)

\(\Rightarrow38x=36\)

\(\Rightarrow x=\frac{18}{19}\)

14 tháng 1 2019

b) \(-7x-\frac{x-3}{5}-\frac{x}{2}=x+\frac{2x+1}{3}\)

\(\frac{-70x}{10}-\frac{2\left(x-3\right)}{10}-\frac{5x}{10}=\frac{3x}{3}+\frac{2x+1}{3}\)

\(\frac{-70x-2x+6-5x}{10}=\frac{3x+2x+1}{3}\)

\(\frac{-77x+6}{10}=\frac{5x+1}{3}\)

\(\Rightarrow3\left(-77x+6\right)=10\left(5x+1\right)\)

\(\Leftrightarrow-231x+18=50x+10\)

\(\Leftrightarrow50x+231x=18-10\)

\(\Leftrightarrow281x=8\)

\(\Leftrightarrow x=\frac{8}{281}\)

Mấy câu kia tương tự

31 tháng 12 2022

a: \(\Leftrightarrow4\left(6-x\right)-3x=6\left(2x+3\right)-12\)

=>24-4x-3x=12x+18-12

=>12x+6=-7x+24

=>19x=18

=>x=18/19

b: \(\Leftrightarrow-210x-6\left(x-3\right)-15x=30x+10\left(2x+1\right)\)

=>-225x-6x+18=30x+20x+10

=>-231x+18-50x-10=0

=>-281x=-8

=>x=8/281

c: \(\Leftrightarrow36-2\left(x+3\right)=-4x+1-x\)

=>36-2x-6=-5x+1

=>3x=1+6-36=5-36=-31

=>x=-31/3

d: \(\Leftrightarrow-30\left(x-3\right)+10\left(2x-7\right)=6\left(6-x\right)\)

=>-30x+90+20x-70=36-6x

=>-10x+20=36-6x

=>-4x=16

=>x=-4