K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2023

a: Phương trình hoành độ giao điểm là:

\(x^2=2mx-m^2+4\)

=>\(x^2-2mx+m^2-4=0\)

\(\Delta=\left(-2m\right)^2-4\left(m^2-4\right)=4m^2-4m^2+16=16>0\)

=>(P) luôn cắt (d) tại hai điểm phân biệt

b: Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-4\end{matrix}\right.\)

Sửa đề: \(x_1^2-3x_1+x_2^2-3x_2=4\)

=>\(\left(x_1^2+x_2^2\right)-3\left(x_1+x_2\right)=4\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2-3\left(x_1+x_2\right)=4\)

=>\(\left(2m\right)^2-2\cdot\left(m^2-4\right)-3\cdot2m=4\)

=>\(4m^2-2m^2+8-6m-4=0\)

=>\(2m^2-6m+4=0\)

=>\(m^2-3m+2=0\)

=>(m-1)(m-2)=0

=>\(\left[{}\begin{matrix}m-1=0\\m-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)

10 tháng 2 2022

a, Thay m =-1 vào (d) ta được : \(y=-2x\)

Hoành độ giao điểm (P) ; (d) thỏa mãn pt 

\(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;x=-2\)

Với x = 0 => y = 0 

Với x = -2 => y = 4 

Vậy với m = -1 thì (P) cắt (D) tại O(0;0) ; A(-2;4) 

b, Hoành độ giao điểm (P) ; (d) thỏa mãn pt 

\(x^2-2mx-m-1=0\)

\(\Delta'=m^2-\left(-m-1\right)=m^2+m+1>0\forall m\)

Vậy pt luôn có 2 nghiệm pb hay (P) cắt (d) tại 2 điểm pb 

c, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m-1\end{cases}}\)

Ta có : \(\left(x_1+x_2\right)^2-5x_1x_2\)Thay vào ta được 

\(4m^2-5\left(-m-1\right)=4m^2+5m+5\)

\(=4m^2+\frac{2.2m.5}{4}+\frac{25}{16}-\frac{25}{16}+5=\left(2m+\frac{5}{4}\right)^2+\frac{55}{16}\ge\frac{55}{16}\)

Dấu ''='' xảy ra khi m = -5/88 

Vậy với m = -5/88 thì GTNN của biểu thức trên là 55/16 

a: Phương trình hoành độ giao điểm là:

\(x^2-mx+1=0\)

\(\text{Δ}=\left(-m\right)^2-4\cdot1\cdot1=m^2-4\)

Để (P) và (d) cắt nhau tại 2 điểm phân biệt thi Δ>0

=>(m-2)(m+2)>0

hay \(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)

b: Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=1\end{matrix}\right.\)

Theo đề, ta có:

\(x_1x_2\left(x_1+x_2\right)-x_1x_2=3\)

\(\Leftrightarrow m-1=3\)

hay m=4

a: PTHDGĐ là:

x^2-(m-1)x-(m^2+1)=0

a*c=-m^2-1<0

=>(P) luôn cắt (d) tại hai điểm phân biệt nằm về hai phía của trục Oy

b: |x1|+|x2|=2căn 2

=>x1^2+x2^2+2|x1x2|=8

=>(x1+x2)^2-2x1x2+2|x1x2|=8

=>(m-1)^2-2(-m^2+1)+2|-m^2-1|=8

=>(m-1)^2+2(m^2+1)+2(m^2+1)=8

=>m^2-2m+1+4m^2+4=8

=>5m^2-2m-3=0

=>5m^2-5m+3m-3=0

=>(m-1)(5m+3)=0

=>m=1 hoặc m=-3/5

21 tháng 12 2021

a, Hoành độ giao điểm (P) ; (d) thỏa mãn pt 

\(x^2=2x-m\Leftrightarrow x^2-2x+m=0\)

Để pt có 2 nghiệm pb khi \(\Delta'=1-m>0\Leftrightarrow m< 1\)

Vậy với m < 1 thì (P) cắt (d) tại 2 điểm pb 

b, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=m\end{cases}}\)

Ta có : \(\frac{1}{x_1^2}+\frac{1}{x_2^2}=2\Leftrightarrow\frac{x_1^2+x_2^2}{x_1^2x_2^2}=2\)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=2\)Thay vào ta có : 

\(\Leftrightarrow\frac{4-2m}{m^2}=2\Leftrightarrow4-2m=2m^2\Leftrightarrow2m^2+2m-4=0\)

mà a + b + c = 0 => 2 + 2 - 4 = 0 

vậy pt có 2 nghiệm 

\(m_1=1\left(ktm\right);m_2=-2\left(tm\right)\)

20 tháng 12 2021

one cộng one bằng two

two cộng one bằng three ok

a: Thay m=4 vào (d), ta được: y=4x+5

Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x^2-4x-5=0\\y=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{5;-1\right\}\\y\in\left\{25;1\right\}\end{matrix}\right.\)

b: Phương trình hoành độ giao điểm là:

\(x^2-mx-5=0\)

a=1; b=-m; c=-5

Vì ac<0 nên phương trình luôn có hai nghiệm phân biệt

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-5\end{matrix}\right.\)

Theo đề, ta có: \(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)

\(\Leftrightarrow\sqrt{m^2-4\cdot\left(-5\right)}=2\)

\(\Leftrightarrow m^2+20=4\)(vô lý)

21 tháng 4 2021

a, Xét hoành độ giao điểm của P và d ta có:

x2 = 3x + m2 - 2 

\(\Delta=b^2-4ac=4m^2+1>0\) ∀x 

=> d luôn cắt P tại hai điểm phân biệt.