![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ảnh ko theo trật tự và bị thiếu nên mk sẽ gửi lại 1 tấm nx và mong bn thông cảm cho
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{2x+1}{x-3}\)
a) \(A=0\Leftrightarrow\frac{2x+1}{x-2}=0\)
\(\Leftrightarrow2x+1=0\Leftrightarrow x=\frac{-1}{2}\)
b) \(A>0\Leftrightarrow\frac{2x+1}{x-2}>0\)
\(\Leftrightarrow2x+1\)và x - 2 cùng dấu
Sau đó xét 2 TH: Cùng dương và cùng âm
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{12x-2}{4x+1}=\frac{12x+3-5}{4x+1}=3-\frac{5}{4x+1}\)
Để f(x) là số nguyên thì 5 chia hết cho (4x+1)
----------lập bảng-------
suy ra x = { 0;1}
b, *f(x)> 0
=> \(\hept{\begin{cases}12x-2>0\\4x+1>0\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{1}{6}\\x>-\frac{1}{4}\end{cases}}\Rightarrow x>\frac{1}{6}\)hoặc \(\hept{\begin{cases}12x-2< 0\\4x+1< 0\end{cases}\Rightarrow x< -\frac{1}{4}}\)
Suy ra f(x)>0 khi \(\orbr{\begin{cases}x>\frac{1}{6}\\x< -\frac{1}{4}\end{cases}}\)
*f(x)<0
=> \(\hept{\begin{cases}12x-2>0\\4x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{6}\\x< -\frac{1}{4}\end{cases}}}\)(loại)
hoặc \(\hept{\begin{cases}12x-2< 0\\4x+1>0\end{cases}\Rightarrow-\frac{1}{4}< x< \frac{1}{6}}\)
Vậy f(x) < 0 khi -1/4 <x<1/6
![](https://rs.olm.vn/images/avt/0.png?1311)
a, (5x+7)(2x-1) <0
<=> \(\hept{\begin{cases}5x+7< 0\\2x-1>0\end{cases}}\)<=> \(\hept{\begin{cases}5x< 7\\2x< 1\end{cases}}\)
<=> \(\hept{\begin{cases}5x+7>0\\2x-1< 0\end{cases}}\)<=> ..................
(5x+7)(2x-1) =0
<=> \(\orbr{\begin{cases}5x+7=0\\2x-1=0\end{cases}}\)<=> ..................
![](https://rs.olm.vn/images/avt/0.png?1311)
Với mọi x thì A= |x+5/8 | \(\ge\)0 .
Dấu ''='' xảy ra khi và chỉ khi x+5/8= o \(\Leftrightarrow\)x= -5/8.
Vậy GTNN (A)= 0 khi x= -5/8.
Ta có:
\(A=\left|x+\frac{5}{8}\right|\ge0\)
Dấu "=" xảy ra khi và chỉ khi x = -5/8
Vậy Min A = 0 khi và chỉ khi x = -5/8
Answer:
\(P=\frac{x+5}{x+8}\left(ĐKXĐ:x\ne-8\right)\)
\(P>1\)
\(\Leftrightarrow\frac{x+5}{x+8}>1\)
\(\Leftrightarrow\frac{x+5}{x+8}-1>0\)
\(\Leftrightarrow\frac{x+5}{x+8}-\frac{x+8}{x+8}>0\)
\(\Leftrightarrow\frac{x+5-x-8}{x+8}>0\)
\(\Leftrightarrow\frac{-3}{x+8}>0\)
\(\Rightarrow x+8< 0\)
\(\Rightarrow x< -8\)
Vậy \(x< -8\Leftrightarrow P>1\)