\(x^4+ax^3+bx^2+cx+d\) . Biết p(0) =12, p(1) =12, p(2) =0, p(4) = 60

a&g...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017
 x^4ax^3bx^2cxddu
x=000001212
x=11abc1212 (a+b+c=-1)
x=2168a4bc120 (4a+2b+c=-14)
x=425664a16b4c1260 (64a+16b+4c=-208)

ta co

\(\hept{\begin{cases}a+b+c=-1\\4a+2b+c=-14\\64a+16b+4c=-208\end{cases}}\)

giai he

\(\hept{\begin{cases}a=-2\\b=-7\\c=8\end{cases}}\)

pt<=>\(a^4-2a^3-7a^2+8a+12\)

b) tu lam

1 tháng 10 2019

â) viết lại biểu thức bên trái = (x2+5x-3)(x2-2x-4)+(14+a)x+b-12

Để là phép chia hết thì số dư =0

Số dư chính là (14+a)x+b-12=0 => a+14=0 và b-12=0 <=>a=-14 và b=12

b) làm tương tự phân tích vế trái thành (x3-2x2+4)(x2+9x+18)+(a+32)x2+(b-36)x

số dư là (a+32)x2+(b-36)x=0 =>a=-32 và b=36

c) Tương tự (x2-1)4x+(a+4)x+b

số dư là (a+4)x+b =2x-3 =>a+4=2 và b=-3 <=>a=-2 và b=-3

15 tháng 10 2018

\(\left(ax^2+bx+c\right)\left(x+1\right)=ax^3+\left(a+b\right)x^2+\left(b+c\right)x+c\)

đồng nhất đa thức trên với đa thức đã cho ta được

\(\left\{{}\begin{matrix}a=1\\a+b=8\\b+c=19\\c=12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=1\\b=7\\c=12\end{matrix}\right.\)

3 phần kia làm tương tự

18 tháng 10 2022

b: \(\left(ax^2+bx+c\right)\left(x+3\right)\)

\(=ax^3+3ax^2+bx^2+3bx+cx+3c\)

\(=ax^3+x^2\left(3a+b\right)+x\left(3b+c\right)+3c\)

Theo đề, ta có:

\(\left\{{}\begin{matrix}3c=0\\3b+c=-3\\3a+b=2\\a=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=0\\b=-1\\a=1\end{matrix}\right.\)

c: \(\left(x^2+cx+2\right)\left(ax+b\right)\)

\(=a\cdot x^3+bx^2+ac\cdot x^2+bc\cdot x+2a\cdot x+2b\)

\(=a\cdot x^3+x^2\left(b+ac\right)+x\left(bc+2a\right)+2b\)

Theo đề, ta có: 2b=-2; bc+2a=0; b+ac=1; a=1

=>b=-1; a=1; c=2

d: \(\left(x^2+cx+1\right)\left(ax+b\right)\)

\(=a\cdot x^3+bx^2+ac\cdot x^2+bc\cdot x+a\cdot x+b\)

\(=a\cdot x^3+x^2\left(b+ac\right)+x\left(bc+a\right)+b\)

Theo đề, ta có:

b=2; bc+a=-3; b+ac=0; a=1

=>b=2; a=1; bc=-3-a=-3-1=-4

=>b=2; a=1; 2c=-4

=>b=2; a=1; c=-2

a: \(\left(x^2+cx+2\right)\left(ax+b\right)\)

\(=ax^3+bx^2+ac\cdot x^2+bc\cdot x+2ax+2b\)

\(=ax^3+x^2\left(b+ac\right)+x\left(bc+2a\right)+2b\)

Theo đề, ta có: a=1; 2b=-2; b+ac=1 và bc+2a=0

=>a=1; b=-1; c-1=1; bc+2a=0

=>a=1; b=-1; c=2

b: \(\left(x^2-x+1\right)\left(ax^2+bx+c\right)\)

\(=ax^4+bx^3+cx^2-ax^3-bx^2-cx+ax^2+bx+c\)

\(=ax^4+x^3\left(b-a\right)+x^2\left(c-b+a\right)+x\left(-c+b\right)+c\)

Theo đề, ta có: 

a=2; b-a=-1; c-b+a=2; -c+b=0; c=1

=>a=2; b=-1+a=-1+2=1; c=1