Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> 2 [ \(P\left(x\right)+Q\left(x\right)+G\left(x\right)\)]= \(x^3+6x^2+5x-4+2x^2+5x^2-x-3-x^3+3x^2-6x+5=16x^2-2x-12\)
=>\(P\left(x\right)+Q\left(x\right)+G\left(x\right)=8x^2-x-6\)
=> \(G\left(x\right)=2x^2-x^3-6x-2\), \(P\left(x\right)=x^2-3\), \(Q\left(x\right)=x^3+5x^2+5x-1\)
đúng cái đi
h(x) = f(x) + g(x) =\(-3x\left(x-2\right)+5x^4-x^2\left(x-3\right)-6x+2\)2 + \(2x^2\left(x^2+3\right)-4x^3-4x^3+2\left(x-1\right)+5\)
= \(-3x^2+6x+5x^4-x^3+3x^2-6x+2+2x^4+6x^2\)-\(4x^3-4x^3+2x-2+5\)
mk làm ra đến đây rồi, bạn tự làm tp nhé, phần sau dễ thôi
sau đó thay h(-1) vào rồi tính nhé
câu sau làm tương tự
a: \(f\left(x\right)+g\left(x\right)-h\left(x\right)\)
\(=5x^5-4x^4+3x^3-x^2-3x+4+x^5-2x^4+x^3-x+7\)
\(=6x^5-6x^4+4x^3-x^2-4x+11\)
f(x)-g(x)-h(x)
\(=15x^5-12x^4+9x^3-7x^2+7x+x^5-2x^4+x^3-x+7\)
\(=16x^5-14x^4+10x^3-7x^2+6x+7\)
b: f(x)+2g(x)=0
\(\Leftrightarrow10x^5-8x^4+6x^3-4x^2+2x+2-10x^5+8x^4-6x^3+6x^2-10x+4=0\)
\(\Leftrightarrow2x^2-8x+6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
=>x=1 hoặc x=3
\(P\left(x\right)+Q\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(f\left(x\right)-g\left(x\right)=3x^4+3x^3-5x^2+x-5-x^4-3x^3+3x^2-5x+7\)
\(=2x^4-2x^2-4x+2\)
\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4-2x^2-4x+2\left(1\right)\)
\(P\left(x\right)-Q\left(x\right)=g\left(x\right)+h\left(x\right)\)
\(g\left(x\right)+h\left(x\right)=x^4+3x^3-3x^2+5x-7+5x^4+2x^3+x^2-5\)
\(=6x^4+5x^3-2x^2+5x-12\)
\(\Rightarrow P\left(x\right)-Q\left(x\right)=6x^4+5x^3-2x^2+5x-12\left(2\right)\)
Từ ( 1 );( 2 ) thì tìm dc P(x) và Q(x)
a/ \(h\left(x\right)=x^4+5x^2+4\)
b/ Do \(\left\{{}\begin{matrix}x^4\ge0\\5x^2\ge0\end{matrix}\right.\) \(\forall x\Rightarrow h\left(x\right)\ge0+0+4=4\)
\(\Rightarrow h\left(x\right)>0\)
\(\Rightarrow h\left(x\right)\) không có nghiệm