Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\\\\\end{cases}\orbr{\begin{cases}\\\end{cases}}^{ }^2⋮̸\Phi\varepsilon\varepsilon\delta\delta\Delta\beta\beta\eta\theta/ℕ^∗}\)
1) trả lời
4253 + 1422 =5775
mà 5775 chia hết cho 3;5
=>nó là hợp số
mình xin lỗi ấn nhầm bây giờ mk giải tiếp
giải
2) để 5x + 7 là số nguyên tố
=>5x+7 chia hết cho 5x+7 và 1
=>x thuộc (2;6)
3) trả lời
n.(n+1) là hợp số bởi vì
nếu n+1 là số lẻ=>n là số chẵn mà chẵn nhân với lẻ lại được số chẵn chia hết cho 2
nếu n+1 là số chẵn =>n là số lẻ mà lẻ nhân chẵn sẽ được số chẵn chia hết cho 2
mình xin lỗi mình chỉ làm dc thế thôi nhé, nếu bạn ko k thi thôi, ko sao
chào bạn
Nếu p = 3k hay p = 3 thì 8p-1 = 23 là số nguyên tố. 8p+1 = 25 là hợp số.
Nếu p = 3k+1 thì 8p +1 = 8(3k+1) + 1 = 24k + 9 là hợp số.
Nếu p = 3k + 2 thì 8p -1 = 8(3k+2 ) - 1 = 24k + 15 là hợp số không thể là số nguyên tố.
Bài toán được chứng minh.
Ta có : 2n -1 ; 2n và 2n + 1 là 3 số tự nhiên liên tiếp.
Trong 3 số tự nhiên liên tiếp chắc chắn có 1 số \(⋮\)3
Mà 2n - 1 là số nguyên tố => 2n + 1 không chia hết cho 3
và 2n ko chia hết cho 3 ( vì 2n là bội của 2 ko chia hết cho 3 và n>2)
=> 2n +1 chia hết cho\(⋮\)3
=> 2n +1 là hợp số
=> Điều cần chứng minh