K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 3 2019

\(\Delta'=1+2m+8=2m+9>0\Rightarrow x>\dfrac{-9}{2}\)

Khi đó theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-2m-8\end{matrix}\right.\)

Để pt có 2 nghiệm thỏa mãn \(x_1< 2< x_2\Rightarrow\left(x_1-2\right)\left(x_2-2\right)< 0\)

\(\Rightarrow x_1x_2-2\left(x_1+x_2\right)+4< 0\)

\(\Leftrightarrow-2m-8-4+4< 0\Leftrightarrow2m>-8\Rightarrow m>-4\)

Kết hợp điều kiện ban đầu ta được \(m>-4\)

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Bài 5:

Để pt có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=(m-1)^2-m^2\geq 0$

$\Leftrightarrow (m-1-m)(m-1+m)\geq 0$

$\Leftrightarrow 1-2m\geq 0\Leftrightarrow m\leq \frac{1}{2}(*)$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2\end{matrix}\right.\)

Khi đó:

$(x_1-x_2)^2+6m=x_1-2x_2$

$\Leftrightarrow (x_1+x_2)^2-4x_1x_2+6m=(x_1+x_2)-3x_2$

$\Leftrightarrow 4(m-1)^2-4m^2+6m=2(m-1)-3x_2$

$\Leftrightarrow 4m-6=3x_2$

$\Leftrightarrow x_2=\frac{4}{3}m-2$

$x_1=2(m-1)-x_2=\frac{2}{3}m$

Suy ra:

$x_1x_2=m^2$

$\Leftrightarrow \frac{2}{3}m(\frac{4}{3}m-2)=m^2$

$\Leftrightarrow m(8m-12-9m)=0$

$\Leftrightarrow m(-m-12)=0$

$\Leftrightarrow m=0$ hoặc $m=-12$. Theo $(*)$ ta thấy 2 giá trị này đều thỏa mãn.

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Bài 4:

Để pt có 2 nghiệm thì $\Delta'=4-2(2m^2-1)\geq 0$

$\Leftrightarrow m^2-1\leq 0\Leftrightarrow -1\leq m\leq 1$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=\frac{2m^2-1}{2}\end{matrix}\right.\)

Khi đó:

$2x_1^2+4mx_2+2m^2-1\geq 0$

$\Leftrightarrow (2x_1^2-4mx_1+2m^2-1)+4mx_1+4mx_2\geq 0$

$\Leftrightarrow 0+4m(x_1+x_2)\geq 0$

$\Leftrightarrow 4m. 2\geq 0$

$\Leftrightarrow m\geq 0$

Kết hợp với điều kiện $-1\leq m\leq 1$ suy ra $0\leq m\leq 1$ thì ycđb được thỏa mãn.

AH
Akai Haruma
Giáo viên
14 tháng 4 2019

Lời giải:

\(\Delta'=(m+1)^2-(m^2+2m)=1>0, \forall m\in\mathbb{R}\) nên pt luôn có 2 nghiệm phân biệt với mọi $m$

Áp dụng định lý Vi-et, với $x_1,x_2$ là nghiệm của pt thì:
\(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=m^2+2m\end{matrix}\right.\)

Khi đó:

\(x_1^3+x_2^3=8\)

\(\Leftrightarrow (x_1+x_2)^3-3x_1x_2(x_1+x_2)=8\)

\(\Leftrightarrow 8(m+1)^3-6(m^2+2m)(m+1)=8\)

\(\Leftrightarrow m^3+3m^2+4m=0\)

\(\Rightarrow m=0\) (thỏa mãn)

Vậy $m=0$

6 tháng 8 2017

\(\Delta\)' = (m+1)2-2m+5 = m2 +2m +1 - 2m +5 =m2 +6 >0 nên pt đã cho luôn có 2 nghiệm x1,x2 phân biệt với mọi m .

Ta có : (x12 -2mx1+2m-1)(x22 -2mx2 +2m+1)<0 (*)

Vì x1,x2 là nghiệm của phương trình 1 nên ta có :

x12 -2mx1+2x1 +2m -5 = 0 => x12 -2mx1+2m-1 +2x1 -4 =0

=>x12 -2mx1+2m-1 = 4-2x1 Tương tự ta có : x22 -2mx2+2m-1 = 4-2x2

khi đó (*) trở thành : (4-2x1)(4-2x2) <0 =>16-8x2-8x1+4x1x2 < 0

<=> 16-8(x1+x2)+4x1x2 <0

vì phương trình đầu luôn có 2 nghiệm phân biệt với mọi m nên theo hệ thức viét ta có :\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)thay vào bất pt trên ta đc :

16-8.2(m-1)+4(2m-5)<0 => 16-16m+16+8m-20<0

12-8m<0 => m>\(\dfrac{3}{2}\)

Vậy m>\(\dfrac{3}{2}\)thì có 2 nghiệm x1 x2 thỏa mãn đề bài .

5 tháng 6 2018

1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0

Nếu x-5=0 suy ra x=5

Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0

Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0

Suy ra x=1 hoặc x=6.

4 tháng 7 2020

bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)

\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)

\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)

thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)

\(\left(++\right)< =>x-5=0< =>x=5\)

Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)

21 tháng 5 2019

mấy bạn giải nhanh hộ mình với