Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Δ=(2m-2)^2-4(m^2-4)
=4m^2-8m+4-4m^2+16=-8m+20
Để phương trình có hai nghiệm phân biệt thì -8m+20>0
=>m<5/2
x1(x1-3)+x2(x2-3)=6
=>x1^2+x2^2-3(x1+x2)=6
=>(x1+x2)^2-2x1x2-3(x1+x2)=6
=>(2m-2)^2-3(2m-2)-2m^2+8=6
=>4m^2-8m+4-6m+6-2m^2+8=6
=>2m^2-14m+12=0
=>m^2-7m+6=0
=>m=1(nhận) hoặc m=6(loại)
Để phương trình đã cho có 2 nghiệm buộc:
\(\Delta\)'\(\ge0\)
\(\Leftrightarrow\left(-m\right)^2+m+3=0\\ \Leftrightarrow\left(m-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\veebar m\)
Do đó với mọi m thì phương trình đã cho có 2 nghiệm
Theo hệ thức viet ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m\\x_1.x_2=\dfrac{c}{a}=-m-3\end{matrix}\right.\)
Từ giả thuyết \(\left|x_1\right|=\left|x_2\right|\\ \Leftrightarrow x_1^2=x_2^2\\ \Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)=0\\ \Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}.\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\sqrt{\left(2m\right)^2+4m+12}.2m=0\\ \Leftrightarrow m=0\)(vì căn của 4m^2+4m+12>0)
Δ=(2m+2)^2-4(-m-5)
=4m^2+8m+4+4m+20
=4m^2+12m+24
=4(m^2+3m+6)
=4(m^2+2*m*3/2+9/4+15/4)
=4(m+3/2)^2+15>=15
=>PT luôn có 2 nghiệm
(x1-x2)^2-x1(x1+3)-x2(x2+3)=-4
=>(x1+x2)^2-4x1x2-(x1+x2)^2+2x1x2-3(x1+x2)=-4
=>-2(-m-5)-3(2m+2)=-4
=>2m+10-6m-6=-4
=>-4m+4=-4
=>-4m=-8
=>m=2
Δ=(2m-2)^2-4(m+1)
=4m^2-8m+4-4m-4
=4m^2-12m
Để phương trình co hai nghiệm thì 4m^2-12m>0
=>m>3 hoặc m<0
x1/x2+x2/x1=4
=>x1^2+x2^2=4x1x2
=>(x1+x2)^2-2x1x2=4x1x2
=>(2m-2)^2-6(m+1)=0
=>4m^2-8m+4-6m-6=0
=>4m^2-14m-2=0
=>\(m=\dfrac{7\pm\sqrt{57}}{2}\)
Bài giải
Ta có : \(\hept{\begin{cases}x_1.x_2=m^2+3\\x_1+x_2=2\left(m+1\right)\end{cases}}\)
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{8}{x_1.x_2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}=\frac{8}{x_1.x_2}\)
<=> ( x1 + x2 ) 2 -2x1x2 = 8
<=>4(m+1)2 -2(m2+ 3 ) = 8 <=> 2m2 + 8m - 10=0
<=> \(\orbr{\begin{cases}m=1\\m=-5\left(L\right)\end{cases}}\)
Chắc đề là tìm m để pt có 2 nghiệm thỏa \(\left|x_1-x_2\right|=4\) chứ nhỉ?