K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 5 2020

a/ Bạn tự giải

b/ Đặt \(x^2=t\ge0\)

\(\Rightarrow t^2-2\left(m+1\right)t+2m+1=0\) (1)

Để pt đã cho có 4 nghiệm pb

\(\Leftrightarrow\) (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m+1\right)^2-2m-1>0\\x_1+x_2=2\left(m+1\right)>0\\x_1x_2=2m+1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m>-\frac{1}{2}\end{matrix}\right.\)

27 tháng 3 2021

a/ \(m=4\to x^2-8x+7=0\\\leftrightarrow x^2-7x-x+7=0\\\leftrightarrow x(x-7)-(x-7)=0\\\leftrightarrow (x-1)(x-7)=0\\\leftrightarrow x-1=0\quad or\quad x-7=0\\\leftrightarrow x=1\quad or\quad x=7\)

b/ Pt có 2 nghiệm phân biệt

\(\to \Delta=(-2m)^2-4.1.(2m-1)=4m^2-8m+4=4(m^2-2m+1)=4(m-1)^2\ge 0\)

\(\to m\in \mathbb R\)

c/ Theo Viét

\(\begin{cases}x_1+x_2=2m\\x_1x_2=2m-1\end{cases}\)

Tổng bình phương các nghiệm là 10

\(\to x_1^2+x_2^2\\=(x_1+x_2)^2-2x_1x_2=(2m)^2-2.(2m-1)=4m^2-4m+2\)

\(\to 4m^2-4m+2=10\)

\(\leftrightarrow 4m^2-4m-8=0\)

\(\leftrightarrow m^2-m-2=0\)

\(\leftrightarrow m^2-2m+m-2=0\)

\(\leftrightarrow m(m-2)+(m-2)=0\)

\(\leftrightarrow (m+1)(m-2)=0\)

\(\leftrightarrow m+1=0\quad or\quad m-2=0\)

\(\leftrightarrow m=-1(TM)\quad or\quad m=2(TM)\)

Vậy \(m\in\{-1;2\}\)

5 tháng 6 2018

1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0

Nếu x-5=0 suy ra x=5

Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0

Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0

Suy ra x=1 hoặc x=6.

4 tháng 7 2020

bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)

\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)

\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)

thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)

\(\left(++\right)< =>x-5=0< =>x=5\)

Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)

18 tháng 10 2020

a) Với m = 3 

Ta có: \(x^4-2.3.x^2+3^2-1=0\)

<=> \(\left(x^2-3\right)^2-1=0\Leftrightarrow\left(x^2-3-1\right)\left(x^2-3+1\right)=0\)

<=> \(\left(x^2-4\right)\left(x^2-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=\pm\sqrt{2}\end{cases}}\)

b) \(x^4-2mx^2+\left(m^2-1\right)=0\)(1)

Đặt: \(x^2=t\ge0\)

Ta có phương trình ẩn t: \(t^2-2mt+\left(m^2-1\right)=0\)(2)

(1) có 3 nghiệm phân biệt <=> (2) có 1 nghiệm t = 0 và 1 nghiệm t >0 

Với t = 0 thay vào (2) ta có: \(m^2-1=0\Leftrightarrow m=\pm1\)

+) Nếu m = 1; ta có: \(t^2-2t=0\Leftrightarrow\orbr{\begin{cases}t=0\\t=3\end{cases}}\)tm 

+) Nếu m = - 1 ta có: \(t^2+2t=0\Leftrightarrow\orbr{\begin{cases}t=0\\t=-2\end{cases}}\)loại

Vậy m = 1

30 tháng 5 2020

a, Thay \(m=-3\)vào phương trình ta có :

\(x^2+x\left(m-1\right)-\left(2m+3\right)=0\)

\(< =>x^2-4x+3=0\)

Ta có : \(\Delta=\left(-4\right)^2-4.3=16-12=4;\sqrt{\Delta}=\sqrt{4}=2\)

\(x_1=\frac{4+2}{2}=3\)\(;\)\(x_2=\frac{4-2}{2}=1\)

nên tập nghiệm của phương trình trên là \(\left\{1;3\right\}\)

b, Ta có : \(\Delta=\left(m-1\right)^2+4\left(2m+3\right)\ge0\)

\(=m^2-2m+1+8m+12\ge0\)

\(=m\left(m-2\right)+8\left(m-2\right)+29\ge0\)

\(=\left(m+8\right)\left(m-2\right)+29\ge0\)

\(=m^2+6m+13\ge0\)( đến đây thì chịu r :) )

c, theo vi ét ta có \(x_1+x_2=-\frac{b}{a}\)

\(< =>x_1+x_2=\frac{-m+1}{2}=7\)

\(< =>-m+1=14\)

\(< =>-m=13< =>m=-13\)