Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\Delta =(-2m)^2-4.1.(2m-3)=4m^2-8m+12=4m^2-8m+4+8=(2m-2)^2+8>0\)
\(\to\) Pt có nghiệm với mọi m
Theo Viét
\(\begin{cases}x_1+x_2=2m\\x_1x_2=2m-3\end{cases}\)
\(x_1^2+x_2^2\\=(x_1+x_2)^2-2x_1x_2\\=(2m)^2-2.(2m-3)\\=4m^2-4m+6\)
\(\to 4m^2-4m+6=6\)
\(\leftrightarrow 4m(m-1)=0\)
\(\leftrightarrow m=0\quad or\quad m-1=0\)
\(\leftrightarrow m=0(tm)\quad or\quad m=1(tm)\)
b/ Pt có 2 nghiệm cùng dấu
\(\to\begin{cases}\Delta\ge 0\\P>0\end{cases}\)
\(\to 2m-3>0\\\leftrightarrow 2m>3\\\leftrightarrow m>\dfrac{3}{2}\)
Vì pt có 2 nghiệm với mọi m
\(\to m>\dfrac{3}{2}\)
Vậy \(m>\dfrac{3}{2}\)
Bài 2:
Để pt có 2 nghiệm phân biệt thì:
$\Delta=9-4m>0\Leftrightarrow m< \frac{9}{4}$
Áp dụng định lý Viet với 2 nghiệm $x_1,x_2$: \(\left\{\begin{matrix} x_1+x_2=3\\ x_1x_2=m\end{matrix}\right.\)
Khi đó:
\(\sqrt{x_1^2+1}+\sqrt{x_2^2+1}=3\sqrt{3}\)
\(\Leftrightarrow x_1^2+x_2^2+2+2\sqrt{(x_1^2+1)(x_2^2+1)}=27\)
\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2+2+2\sqrt{(x_1x_2)^2+(x_1^2+x_2^2)+1}=27\)
\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2+2+2\sqrt{(x_1x_2)^2+(x_1+x_2)^2-2x_1x_2+1}=27\)
$\Leftrightarrow 9-2m+2+2\sqrt{m^2+9-2m+1}=27$
$\Leftrightarrow \sqrt{m^2-2m+10}=m+8$
\(\Rightarrow \left\{\begin{matrix} m\geq -8\\ m^2-2m+10=(m+8)^2=m^2+16m+64\end{matrix}\right.\)
\(\Rightarrow m=-3\) (thỏa mãn)
Vậy........
Bài 1:
Ta thấy $\Delta'=m^2-(m^2-2)=2>0$ với mọi $m$ nên PT có 2 nghiệm phân biệt với mọi $m$
Áp dụng định lý Viet, với $x_1,x_2$ là nghiệm của pt thì:
\(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m^2-2\end{matrix}\right.\)
Khi đó:
\(|x_1^3-x_2^3|=10\sqrt{2}\)
\(\Leftrightarrow |x_1-x_2||x_1^2+x_1x_2+x_2^2|=10\sqrt{2}\)
\(\Leftrightarrow \sqrt{(x_1+x_2)^2-4x_1x_2}.|(x_1+x_2)^2-x_1x_2|=10\sqrt{2}\)
\(\Leftrightarrow \sqrt{4m^2-4(m^2-2)}.|4m^2-(m^2-2)|=10\sqrt{2}\)
\(\Leftrightarrow |3m^2+2|=5\Leftrightarrow 3m^2+2=5\Leftrightarrow m=\pm 1\) (thỏa mãn)
Vậy........
Ta có : \(x^2-2\left(m-1\right)x+2m-5=0\left(a=1;b=-2m+2;c=2m-5\right)\)
a, Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)hay
\(\left(-2m+2\right)^2-4\left(2m-5\right)=4m^2+4-8m+20=4m^2-8m+24>0\)
b, Theo hệ thức Vi et ta có : \(x_1+x_2=2m-2;x_1x_2=2m-5\)
Theo bài ra ta có : mk để \(x_1;x_2\)lần lượt là \(a;b\)nhé
\(\left(a^2-2ma-b+2m-3\right)\left(b^2-2mb-a+2m-3\right)=19\)
Do a;b là nghiệm nên a;b thỏa mãn pt đã cho nghĩa : \(\hept{\begin{cases}a^2-2\left(m-1\right)a+2m-5=0\\a^2-2\left(m-1\right)b+2m-5=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-2a+2\\-2b+2\end{cases}}\)Thay vào pt trên ta đc : \(\left(-2a+2\right)\left(-2b+2\right)=19\)
\(\Leftrightarrow4ab+2a^2-4a+2b^2+ab-2b-4b-2a+4=19\)
\(\Leftrightarrow2\left(a+b\right)^2-6\left(a+b\right)+ab=15\) Thay vào ta lại có pt mới :
\(2\left(2m-2\right)^2-6\left(2m-2\right)+2m-5=15\)
\(\Leftrightarrow2\left(4m-4\right)-12m+12+2m-5-15=0\)
\(\Leftrightarrow8m-8-12m+2m+12-5-15=0\)
\(\Leftrightarrow-2m-16=0\Leftrightarrow-2m=16\Leftrightarrow m=-8\)
Ta có : \(\Delta^'=\left[-\left(m+1\right)\right]^2-1.\left(m^2+2m\right)\)
\(\Delta^'=m^2+2m+1-m^2-2m\)
\(\Delta^'=1>0\)
=> phương trình luôn có hai nghiệm phân biệt
Theo hệ thức vi - ét ta có : \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\left(1\right)\\x_1x_2=m^2+2m\left(2\right)\end{cases}}\)
Theo bài ra ta có : \(x_1^3-x_2^3=8\)
\(\Rightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=8\left(3\right)\)
Thay \(\left(1\right)\)và \(\left(2\right)\)vào \(\left(3\right)\)
Ta được : \(\left(2m+2\right)^3-3.\left(m^2+2m\right).\left(2m+2\right)=8\)
\(\Rightarrow\left(2m\right)^3+3.4m^2.2+3.2m.4+8-6m^3-18m^2-12m=8\)
\(\Rightarrow2m^3+6m^2+12m=0\)
\(\Rightarrow2m.\left(m^2+3m+6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2m=0\\m^2+3m+6=0\end{cases}}\)
\(\Leftrightarrow m=0\)
Vậy với m = 0 thì pt có 2 nghiện thõa mãn x13 - x23 = 8
Dùng lớp 8 giải
\(\Leftrightarrow x^2-2\left(m+1\right)x+\left(m+1\right)^2=1\) thêm 1 hai vế
\(\left[x-\left(m+1\right)\right]^2=1\)\(\Rightarrow x_1=m+2;x_2=m\)
\(x_1^3-x_2^3=8\)
Do x1, x2 tự đặt phải phân ra
TH1:(m+2)^3-m^3=8
TH2: m^3-(m+2)^3=8
\(TH1:\Leftrightarrow m^3=\left(m+2\right)^3-2^3=m^3+6m\left(m+2\right)\)
\(\Leftrightarrow6m\left(m+2\right)=0\Rightarrow m=0.hoac:;m=-2\)
\(TH2:-2^8-3m\left(m+2\right)=2^3\Leftrightarrow3m^2+6m+16=0\) vô nghiệm
=> đề thiếu dự kiện x1>x2
a) Với m = 3
Ta có: \(x^4-2.3.x^2+3^2-1=0\)
<=> \(\left(x^2-3\right)^2-1=0\Leftrightarrow\left(x^2-3-1\right)\left(x^2-3+1\right)=0\)
<=> \(\left(x^2-4\right)\left(x^2-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=\pm\sqrt{2}\end{cases}}\)
b) \(x^4-2mx^2+\left(m^2-1\right)=0\)(1)
Đặt: \(x^2=t\ge0\)
Ta có phương trình ẩn t: \(t^2-2mt+\left(m^2-1\right)=0\)(2)
(1) có 3 nghiệm phân biệt <=> (2) có 1 nghiệm t = 0 và 1 nghiệm t >0
Với t = 0 thay vào (2) ta có: \(m^2-1=0\Leftrightarrow m=\pm1\)
+) Nếu m = 1; ta có: \(t^2-2t=0\Leftrightarrow\orbr{\begin{cases}t=0\\t=3\end{cases}}\)tm
+) Nếu m = - 1 ta có: \(t^2+2t=0\Leftrightarrow\orbr{\begin{cases}t=0\\t=-2\end{cases}}\)loại
Vậy m = 1
Lời giải:
Đặt \(x^2=t(t\geq 0)\) thì pt ban đầu trở thành:
\(t^2-2(m+1)t+2m+1=0(*)\)
Để pt ban đầu chỉ có 2 nghiệm phân biệt thì $(*)$ chỉ có một nghiệm dương.
-------
Xét \(\Delta'_{*}=(m+1)^2-(2m+1)=m^2\)
Theo công thức nghiệm của pt bậc 2 suy ra \((*)\) luôn có nghiệm:
\(t_1=1; t_2=2m+1\)
Vậy $(*)$ có một nghiệm dương khi mà:
\(\left[\begin{matrix} 2m+1=1\\ 2m+1< 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m=0\\ m< \frac{-1}{2}\end{matrix}\right.\)
Vậy \(m=0\) hoặc \(m< \frac{-1}{2}\)