Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge0\)
\(\left(x^2-x-m\right)\sqrt{x}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)
Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm
Do đó:
a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm
\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)
b. Để pt có 2 nghiệm pb
TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0
\(\Leftrightarrow m=0\)
TH2: (1) có 2 nghiệm trái dấu
\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)
\(\Rightarrow m\ge0\)
c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)
(m-1)x2-2mx+m-2=0(m\(\ne1\) )
\(\Delta\)'=\(m^2-\left(m-2\right)\left(m-1\right)\)
=\(m^2-m^2+m+2m-2\)
=3m-2
Để pt có nghiệm 2 ngiệm trái dấu thì \(\Delta\) ' =3m-2>0\(\Leftrightarrow m>\dfrac{2}{3}\)
Áp dụng hệ thức Viet, ta có
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m}{m-1}\\x_1.x_2=\dfrac{m-2}{m-1}\end{matrix}\right.\)
Để PT có 2 nghiệm trái dấu thì x1x2<0\(\Leftrightarrow\dfrac{m-2}{m-1}< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m-2< 0\\m-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}m-2>0\\m-1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}m< 2\\m>1\end{matrix}\right.\\\left\{{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow1< m< 2\)
Vậy 1<m<2 thì pt có 2 nghiệm trái dấu
câu b
.Với m=1\(\Rightarrow-2x-1=0\Leftrightarrow x=\dfrac{-1}{2}\left(l\right)\)
.Với \(m\ne1\)
\(\Rightarrow\Delta\)'=3m-2\(\ge0\Leftrightarrow m\ge\dfrac{2}{3}\)
a, \(\sqrt{2x^2-2x+m}=x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2x+m=x^2+2x+1\\x+1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x+m-1=0\left(1\right)\\x\ge-1\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có nghiệm \(x\ge-1\) chỉ có thể xảy ra các trường hợp sau
TH1: \(x_1\ge x_2\ge-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'\ge0\\\dfrac{x_1+x_2}{2}\ge-1\\1.f\left(-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\2\ge-1\\m+4\ge0\end{matrix}\right.\)
\(\Leftrightarrow-4\le m\le5\)
TH2: \(x_1\ge-1>x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\m+4< 0\end{matrix}\right.\)
\(\Rightarrow\) vô nghiệm
Vậy \(-4\le m\le5\)
Pt hoành độ giao điểm:
\(x^2+2mx+2m=2x+3\)
\(\Leftrightarrow x^2-2x-3+2m\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)+2m\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2m-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2m+3\end{matrix}\right.\)
Do \(-1< 2\) nên bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}-2m+3\ne-1\\-2m+3< 2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m\ne2\end{matrix}\right.\)
\(x^3-x^2+2mx-2m=0\)
\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)
Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)
a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\)
Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)
Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu
b.
Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)
\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn
Em coi lại đề bài