Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Đặt \(x^3=a\) thì pt trở thành:
\(a^2+2003a-2005=0\)
\(\Leftrightarrow (a+\frac{2003}{2})^2=2005+\frac{2003^2}{2^2}=\frac{4020029}{4}\)
\(\Rightarrow \left[\begin{matrix} a+\frac{2003}{2}=\sqrt{\frac{4020029}{4}}\\ a+\frac{2003}{2}=-\sqrt{\frac{4020029}{4}}\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} a=\sqrt{\frac{4020029}{4}}-\frac{2003}{2}\approx 1\\ a=-\sqrt{\frac{4020029}{4}}-\frac{2003}{2}\approx -2004\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=\sqrt[3]{a}\approx 1\\ x=\sqrt[3]{a}\approx \sqrt[3]{-2004}\end{matrix}\right.\)
b)
Đặt \(x^2=a(a\geq 0)\)
PT trở thành: \(\sqrt{2}a^2-2(\sqrt{2}+\sqrt{3})a+\sqrt{12}=0\)
\(\Delta'=(\sqrt{2}+\sqrt{3})^2-\sqrt{2}.\sqrt{12}=5\)
Theo công thức nghiệm của pt bậc 2 thì pt có 2 nghiệm:
\(\left\{\begin{matrix} a_1=\frac{(\sqrt{2}+\sqrt{3})+\sqrt{5}}{\sqrt{2}}\\ a_2=\frac{(\sqrt{2}+\sqrt{3})-\sqrt{5}}{\sqrt{2}}\end{matrix}\right.\)
Do đó \(x=\pm \sqrt{a}\in\left\{\pm \sqrt{\frac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{\sqrt{2}}};\pm \sqrt{\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{\sqrt{2}}}\right\}\)
Câu 2:
Đặt \(x^2=a\). PT ban đầu trở thành:
\(a^2+a+m=0(*)\)
\(\bullet \)Để pt ban đầu có 3 nghiệm pb thì $(*)$ phải có một nghiệm $a=0$ và một nghiệm $a>0$
Để $a=0$ là nghiệm của $(*)$ thì \(0^2+0+m=0\Leftrightarrow m=0\)
Khi đó: \((*)\Leftrightarrow a^2+a=0\). Ta thấy nghiệm còn lại là $a=-1< 0$ (vô lý)
Do đó không tồn tại $m$ để pt ban đầu có 3 nghiệm pb.
\(\bullet\) Để pt ban đầu có 4 nghiệm pb thì $(*)$ phải có 2 nghiệm dương phân biệt
Mà theo định lý Viete, nếu $(*)$ có 2 nghiệm pb $a_1,a_2$ thì:\(a_1+a_2=-1< 0\) nên 2 nghiệm không thể đồng thời cùng dương.
Vậy không tồn tại $m$ để pt ban đầu có 4 nghiệm phân biệt.
Lời giải:
Để cho gọn, đặt \(x^2=t(t\geq 0)\)
PT trở thành:
\((m-2)t^2-2(m+1)t+(2m-1)=0(*)\)
a) Để PT đã cho vô nghiệm thì thì \(\Delta'\) âm hoặc \((*)\) có nghiệm âm.
----------------------------
\(\Delta'=(m+1)^2-(m-2)(2m-1)<0\)
\(\Leftrightarrow -m^2+7m-1<0\)
\(\Leftrightarrow m< \frac{7-3\sqrt{5}}{2}\) hoặc \(m> \frac{7+3\sqrt{5}}{2}\)
PT \((*)\) có nghiệm âm khi mà:
\(\left\{\begin{matrix} \Delta'=-m^2+7m-1\geq 0\\ t_1+t_2=\frac{2(m+1)}{m-2}<0\\ t_1t_2=\frac{2m-1}{m-2}>0\end{matrix}\right.\)
\(\Leftrightarrow \frac{1}{2}>m\geq \frac{7-3\sqrt{5}}{2}\)
Vậy để PT vô nghiệm thì \(\frac{1}{2}>m\geq \frac{7-3\sqrt{5}}{2}\) , \(m< \frac{7-3\sqrt{5}}{2}\) hoặc \(m> \frac{7+3\sqrt{5}}{2}\)
b) Để PT đã cho có nghiệm duy nhất thì (*) có nghiệm duy nhất. Với nghiệm \((*)\) thu được duy nhất là \(t=k\geq 0\), nếu \(k\neq 0\Rightarrow \) PT đã cho có 2 nghiệm \(\pm \sqrt{k}\) (không thỏa mãn).
Do đó nếu PT đã cho có nghiệm duy nhất thì nghiệm đó phải là 0
\(\Rightarrow (m-2).0^4-2(m+1).0^2+2m-1=0\Leftrightarrow m=\frac{1}{2}\)
Thay vào thử lại thấy thỏa mãn.
Vậy \(m=\frac{1}{2}\)
c) Để PT đã cho có hai nghiệm thì \((*)\) có duy nhất một nghiệm dương, nghiệm còn lại âm. Khi đó:
\(\Delta'=-m^2+7m-1>0\) (1)
Và: \(t_1t_2<0\Leftrightarrow \frac{2m-1}{m-2}<0\Leftrightarrow \frac{1}{2}< m< 2\) (2)
Kết hợp (1); (2) suy ra \(\frac{1}{2}< m< 2\)
d)
PT ban đầu có ba nghiệm khi mà $(*)$ có một nghiệm bằng 0 và một nghiệm còn lại là dương.
\((*)\) có nghiệm 0 thì PT ban đầu cũng có nghiệm 0. Theo phần b ta suy ra \(m=\frac{1}{2}\). Thử lại ta thấy với \(m=\frac{1}{2}\) thì PT ban đầu có nghiệm 0 duy nhất. Do đó không tồn tại $m$ để PT có ba nghiệm.
e)
Để PT ban đầu có 4 nghiệm thì $(*)$ có hai nghiệm dương phân biệt. Điều này xảy ra khi mà:
\(\Delta'=-m^2+7m-1>0\) (1)và: \(\left\{\begin{matrix} t_1+t_2=\frac{2(m+1)}{m-2}>0\\ t_1t_2=\frac{2m-1}{m-2}>0\end{matrix}\right.\)
\(\Leftrightarrow m>2\) (2)
Từ (1); (2) suy ra \(2< m< \frac{7+3\sqrt{5}}{2}\)
Câu 1:
a: \(\Leftrightarrow\left\{{}\begin{matrix}x^2-14x+49-2x-1=0\\x< =7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-16x+48=0\\x< =7\end{matrix}\right.\Leftrightarrow x=4\)
Câu 2:
\(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot4=4m^2-16\)
Để phương trình có hai nghiệm thì (m-2)(m+2)>=0
=>m>=2 hoặc m<=-2
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\)
\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)
\(\Leftrightarrow x_1^2+x_2^2+2x_1+2x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)
\(\Leftrightarrow4m^2+4m-8=0\)
=>(m+2)(m-1)=0
=>m=-2(nhận) hoặc m=1(loại)
a: PT=>-x^2+2x-m=0
=>x^2-2x+m=0
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot m=-4m+4\)
Để phương trình có hai nghiệm thì -4m+4>=0
=>m<=1
b: \(PT\Leftrightarrow m=-x^2+2x\)
\(x\in\left[-1;2\right]\) nên \(\left\{{}\begin{matrix}-x^2\in\left[-4;0\right]\\2x\in\left[-2;4\right]\end{matrix}\right.\Leftrightarrow-x^2+2x\in\left[-6;4\right]\)
=>\(m\in\left[-6;4\right]\)