\(x^2+px-1=0\)(p là số lẻ) có hai nghệm phân biệt x1,x2
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2016

+b2 - 4ac > 0

+x1 - x2 = 5 

+ x12 - x23 =5[(x1-x2)2 -3x1x2] =35 => 25 - 3 x1x2 =7 => - x1.x2 = -6

=> x1 ; - x2 là nghiệm của pt : X2 -5X - 6 =0 => X1 =-1 ; -X2 = 6 hoặc x1 = 6 ; -x2 =-1

+ x1 = -1 ; x2 =-6 => a = 7 ; b = 6

+ x1 =6 ; x2 = 1 => a =-7 ; b = 6

30 tháng 1 2016

sai đề bài rùi kìa phải là ax mà

26 tháng 1 2016

Theo ht Viete ta có :

\(\int^{x1+x2=-\frac{b}{a}}_{x1x2=\frac{c}{a}}\)

Xét \(\frac{1}{x1^2}+\frac{1}{x2^2}=\frac{x1^2+x2^2}{x1^2x2^2}=\frac{\left(x1+x2\right)^2-2x1x2}{x1^2\cdot x2^2}=\frac{\left(\frac{-b}{a}\right)^2-\frac{2c}{a}}{\left(\frac{c}{a}\right)^2}\)  rút gọn tiếp nha  (1)

\(\frac{1}{x1^2}\cdot\frac{1}{x2^2}=\frac{1}{\left(x1x2\right)^2}=\frac{1}{\left(\frac{c}{a}\right)^2}=\frac{a^2}{c^2}\)  (2)

Từ (1) và (2) => \(\frac{1}{x1^2};\frac{1}{x2^2}\) là nghiệm pt ....

bạn ấn vào đúng 0 sẽ ra kết quả, mình giải được rồi dễ lắm

26 tháng 10 2019

Có: \(\Delta=p^2+4>0\), mọi p 

=> phương trình luôn có 2 nghiệm phân biệt .

Áp dụng định lí Viet ta có:

\(x_1+x_2=-p\)

\(x_1.x_2=-1\)

Ta cần chứng minh với  n là số tự nhiên:  \(S_{n+2}=-pS_{n+1}+S_n\)  (1)

+)  Với  \(S_0=x_1^o+x_2^o=2\);\(S_1=-p\)

 \(S_2=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=p^2+2=-pS_1+S_2\)

=>(1)  đúng với  n = 0.

+) G/s : (1) đúng với  n

+) Chứng minh (1) đúng  (1) đúng với n +1

Ta có: \(S_{n+1}=x_1^{n+1}+x_2^{n+1}=\left(x_1^n+x_2^n\right)\left(x_1+x_2\right)-x_1x_2\left(x_1^{n-1}+x_1^{n-2}\right)\)

\(=-pS_n+S_{n-1}\)

=> (1) đúng với n +1

Vậy với mọi số tự nhiên n: \(S_{n+2}=-pS_{n+1}+S_n\)(1)

G/s: \(\left(S_n;S_{n+1}\right)=d\)

=> \(\hept{\begin{cases}S_{n+1}=-pS_n+S_{n-1}⋮d\\S_n⋮d\end{cases}}\Rightarrow S_{n-1}⋮d\)

=> \(\hept{\begin{cases}S_n=-pS_{n-1}+S_{n-2}⋮d\\S_{n-1}⋮d\end{cases}}\Rightarrow S_{n-2}⋮d\)

.....

Cứ tiếp tự như vậy 

=> \(S_0⋮d;S_1⋮d\)

=> \(\hept{\begin{cases}2⋮d\Rightarrow d\in\left\{\pm1;\pm2\right\}\\-p⋮d\Rightarrow d\in\left\{\pm1;\pm p\right\}\end{cases}}\)

Mà p là số lẻ 

=> d =1

=> \(S_n;S_{n-1}\)là hai số nguyên tố cùng nhau.

25 tháng 1 2016

dùng vi ét đc k bạn 

25 tháng 1 2016

Tuấn đc

11 tháng 6 2020

dcv_new 

dcv - new

Thay m = - 1 vào thì ta có: \(x^2-x-6=0\)

<=> x = 3 hoặc x = -2 

Vậy m = -1 và x2 = - 2

11 tháng 6 2020

a, Thay \(x_1=3\)vào phương trình , khi đó :

\(pt< =>\)\(3^2+3m+2m-4=0\)

\(< =>5m+5=0\)

\(< =>m=-\frac{5}{5}=-1\)

Thay \(m=-1\)vào phương trình , khi đó :

\(pt< =>x^2-x+2=0\)

\(< =>x=\varnothing\left(vo-nghiem\right)\)(giải delta)

Vậy phương trình chỉ có nghiệm kép khi \(m=-1\)

b, Theo hệ thức vi ét ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m\\x_1x_2=\frac{c}{a}=2m-4\end{cases}}\)

Khi đó \(A=\frac{2m-4+3}{-m}=\frac{2m-1}{-m}\)

Bạn thiếu đề rồi thì phải !

NV
5 tháng 5 2020

\(\Delta=25-4\left(m+4\right)=9-4m\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m+4\end{matrix}\right.\)

a/ \(\Delta>0\Rightarrow m< \frac{9}{4}\)

\(x_1^2+x_2^2=23\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=23\)

\(\Leftrightarrow25-2\left(m+4\right)=23\Rightarrow m+4=1\Rightarrow x=-3\) (t/m)

b/ \(\Delta\ge0\Rightarrow m\le\frac{9}{4}\)

Để pt có nghiệm khác 0 thì \(m\ne-4\)

Khi đó: \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=-3\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-3\)

\(\Leftrightarrow\frac{25-2\left(m+4\right)}{m+4}=-3\)

\(\Leftrightarrow-m-4=25\Rightarrow m=-29\) (t/m)

21 tháng 3 2017

ta thấy pt luôn có no . Theo hệ thức Vi - ét ta có:

x1 + x2 = \(\dfrac{-b}{a}\) = 6

x1x2 = \(\dfrac{c}{a}\) = 1

a) Đặt A = x1\(\sqrt{x_1}\) + x2\(\sqrt{x_2}\) = \(\sqrt{x_1x_2}\)( \(\sqrt{x_1}\) + \(\sqrt{x_2}\) )

=> A2 = x1x2(x1 + 2\(\sqrt{x_1x_2}\) + x2)

=> A2 = 1(6 + 2) = 8

=> A = 2\(\sqrt{3}\)

b) bạn sai đề