K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2018

Bạn tham khảo ở đường link dưới nhé

Câu hỏi của Châu Minh Khang - Toán lớp 9 - Học toán với OnlineMath

10 tháng 6 2016

Áp dụng hệ thức Vi-et, ta có : 

\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=-\left(2m+3\right)\end{cases}}\)

Đặt \(A=\left|\frac{x_1+x_2}{x_1-x_2}\right|\ge0\). A đạt giá trị nhỏ nhất \(\Leftrightarrow A^2\)đạt giá trị nhỏ nhất.

Ta có : \(A^2=\left(\frac{x_1+x_2}{x_1-x_2}\right)^2=\frac{\left(x_1+x_2\right)^2}{\left(x_1+x_2\right)^2-4x_1.x_2}=\frac{4\left(m+1\right)^2}{4\left(m+1\right)^2+4\left(2m+3\right)}=\frac{4\left(m+1\right)^2}{4m^2+16m+16}=\frac{\left(m+1\right)^2}{\left(m+2\right)^2}\ge0\)

Suy ra \(MinA^2=0\Leftrightarrow m=-1\) 

Vậy Min A = 0 \(\Leftrightarrow\)m = -1

10 tháng 6 2016

ở bài này phải chỉ ra \(\Delta'\)lớn hơn hoặc bằng 0 , hoặc chỉ ra a và c trái dấu nên phương trình có 2 nghiệm x1,x2 thì mới được áp dụng hệ thức Viét

3 tháng 6 2019

\(\Delta^`\ge0\)

\(\Leftrightarrow m^2-\left(m^2-2\right).2\ge0\)

\(\Leftrightarrow4-m^2\ge0\)

\(\Leftrightarrow4\ge m^2\)

\(\Leftrightarrow4\ge m^2\)

\(\Leftrightarrow-2\le m\le2\)

3 tháng 6 2019

Theo hệ thức Viet có:

\(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=\frac{m^2-2}{2}\end{cases}}\)

\(\Rightarrow A=\left|2x_1.x_2-x_1-x_2-4\right|=\left|m^2-m-6\right|=\left|\left(m-\frac{1}{2}\right)^2-6,25\right|\)

Có:

\(\left(m-\frac{1}{2}\right)^2\le\left(-2-\frac{1}{2}\right)^2=6,25\)

\(\Rightarrow A=\left|\left(m-\frac{1}{2}\right)^2-6,25\right|=6,25-\left(m-\frac{1}{2}\right)^2\le6,25\)

\(A=6,25\Leftrightarrow m=\frac{1}{2}\left(tm\right)\)

KL:..............................................

hệ thức vi ét và biệt thức denta để làm gì hả bạn ?

do`  bạn ngu hay` mình quá víp ? t í ch cho mình rồi mik làm , 

25 tháng 7 2018

Mình ngu thiệt mà, giúp mình đi. Mình làm mà thấy kết quả kì kì. Cao nhân xin giúp đỡ 

8 tháng 4 2020

Để phương trình có nghiệm x1;x2 thì :

\(\Delta'=\left(m+4\right)^2-\left(m^2-8\right)\)

\(=\left(m^2+8m+16\right)-m^2+8\)

\(=8m+24\ge0\Leftrightarrow m\ge-3\)

Theo hệ thức Viet,ta có :

\(\left\{{}\begin{matrix}x1+x2=2\left(m+4\right)\\x1.x2=m^2-8\end{matrix}\right.\)

a) \(A=x1^2+x2^2-x1-x2=\left(x1+x2\right)^2-\left(x1+x2\right)-2x1x2=4\left(m+4\right)^2-2\left(m+4\right)-2\left(m^2-8\right)\)

\(A=2m^2+30m+66=0\)

\(A=\left(4m+3\right)^2-\frac{519}{8}\ge-\frac{519}{8}\)

b) \(B=2\left(m+4\right)-3\left(m^2-8\right)\)

\(B=-3m^2+2m+32\)

\(B=\frac{97}{3}-\left(3x-1\right)^2\le\frac{97}{3}\Leftrightarrow x=\frac{1}{3}\)

c) \(C=x1^2+x2^2-x1x2=\left(x1+x2\right)^2-3x1x2\)

\(C=4\left(m+4\right)^2-3\left(m^2-8\right)\)

\(C=-3m^2+4m+28\)

\(C=\frac{88}{3}-\left(3x-2\right)^2\le\frac{88}{3}\Leftrightarrow x=\frac{2}{3}\)

13 tháng 4 2020

Câu a biến đổi để tìm gtnn sai á g=)))