\(x^2-ax+a+1=0\) .

Chứng minh với a+b >=2 thì có ít nhất một trong hai p...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2020

Xét Delta 2 phương trình trên:

\(\Delta_1=a^2-b;\Delta_2=b^2-a\)

Ta có:\(\Delta_1+\Delta_2=a^2-a+b^2-b\ge a^2-2a+1+b^2-2b+1=\left(a-1\right)^2+\left(b-1\right)^2\)

\(\Rightarrow\Delta_1+\Delta_2\ge0\Rightarrow\) ít nhất một trong 2 phương trình trên có nghiệm

19 tháng 6 2020

Sao giống cách Nhất Huy làm trên Facebook thế 😂

20 tháng 5 2019

* Giả sử cả 3 pt đều có nghiệm kép hoặc vô nghiệm ta có : 

pt \(x^2-2ax+b=0\) (1) có \(\Delta_1'=\left(-a\right)^2-b=a^2-b\le0\)

pt \(x^2-2bx+c=0\) (2) có \(\Delta_2'=\left(-b\right)^2-c=b^2-c\le0\)

pt \(x^2-2cx+a=0\) (3) có \(\Delta_3'=\left(-c\right)^2-a=c^2-a\le0\)

\(\Rightarrow\)\(\Delta_1'+\Delta_2'+\Delta_3'=\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\le0\) (*) 

Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)>0\\b\left(3-b\right)>0\\c\left(3-c\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}3a>a^2\\3b>b^2\\3c>c^2\end{cases}}}\)

\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)< 3\left(a+b+c\right)-\left(a+b+c\right)=2\left(a+b+c\right)=6>0\)

trái với (*) 

Vậy có ít nhất một phương trình có hai nghiệm phân biệt 

cái kia chưa bt làm -_- 

9 tháng 7 2019

Câu hỏi của Trần Hà My - Toán lớp 9 - Học toán với OnlineMath

Bạn tham khảo link này nhé!

13 tháng 8 2018

giả sử 3 phương trình trên đều vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}b^2-ac< 0\\c^2-ba< 0\\a^2-cb< 0\end{matrix}\right.\)

\(\Leftrightarrow a^2+b^2+c^2< ab+bc+ca\Leftrightarrow2a^2+2b^2+2c^2< 2ab+2bc+2ca\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)< 0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2< 0\left(vôlí\right)\)

\(\Rightarrow\) giả sử bang đầu là sai \(\Rightarrowđpcm\)

1 tháng 3 2019

số 4 đâu ạ