\(x^2-5x-1=0\). biết pt có 2 ngh x1, x2. Lập pt bậc hai ẩn y( với các hệ số là số...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 6 2018

Lời giải:

Xét pt đầu tiên. Theo định lý Viete ta có:

\(\left\{\begin{matrix} x_1+x_2=5\\ x_1x_2=-1\end{matrix}\right.\)

Khi đó:

\(y_1+y_2=1+\frac{1}{x_1}+1+\frac{1}{x_2}=2+\frac{1}{x_1}+\frac{1}{x_2}\)

\(=2+\frac{x_1+x_2}{x_1x_2}=2+\frac{5}{-1}=-3\)

Và:

\(y_1y_2=\left(1+\frac{1}{x_1}\right)\left(1+\frac{1}{x_2}\right)=\frac{(x_1+1)(x_2+1)}{x_1x_2}\)

\(=\frac{x_1x_2+(x_1+x_2)+1}{x_1x_2}=\frac{-1+5+1}{-1}=-5\)

Vậy $y_1+y_2=-3; y_1y_2=-5$

Theo định lý Viete đảo, thì $y_1,y_2$ là nghiệm của PT:

\(y^2+3y-5=0\)

20 tháng 6 2021

Phương trình đã cho có nghiệm khi và chỉ khi \(\hept{\begin{cases}m\ne0\\\Delta\ge0\end{cases}}\)

Xét \(\Delta=\left(m+2\right)^2-8m=\left(m-2\right)^2\ge0\)

Suy ra phương trình đã cho có 2 nghiệm \(x_1;x_2\)với mọi m khác 0

Theo hệ thức Viet , ta có : \(x_1+x_2=\frac{m+2}{m}\left(1\right);x_1x_2=\frac{2}{m}\)(2)

Ta có \(P=\frac{x_1}{x_2+1}+\frac{x_2}{x_1+1}=\frac{\left(x_1^2+x_2^2\right)+x_1+x_2}{x_1x_2}\)

\(=\frac{\left(x_1+x_2\right)^2-2x_1x_2+\left(x_1+x_2\right)}{x_1x_2}\)

\(=\frac{\left(x_1+x_2\right)^2+\left(x_1+x_2\right)}{x_1x_2}-2\)(3)

Từ (1) , (2) và (3) suy ra \(P=\frac{m^2+m+2}{m}\)với m khác 0

23 tháng 5 2018

1) \(a=1,b^,=\frac{-2\left(m-1\right)}{2},c=m^2-3m.\)

\(\Delta^'=b^2-ac\Leftrightarrow\Delta^'=\left(-\left(m-1\right)\right)^2-\left(m^2-3m\right)\)

\(=m^2-2m+1-m^2+3m=m+1\)

vậy để pt có nghiệm thì  \(\Delta^'\ge0\Leftrightarrow m\ge-1\)

2)  

a) \(A^2=\left(|x1+x2|\right)^2=x_1^2+x_2^2+2|x_1x_2|\)

     \(A^2=\left(x_1+x_2\right)^2+2|x1x2|-2x_1x_2\)

ap dụng vi ét ta có 

         \(A^2=4\left(m-1\right)^2+2|m^2-3m|-2\left(m^2-3m\right)\)

         \(A^2=4m^2-8m+1-2m^2+6m+2|m^2-3m|\)

          \(A^2=2m^2-2m+1+2|m^2-3m|\)

           \(A=\sqrt{2m^2-2m+1+2|m^2-3m|}\) \(dk;;m\ge-1\)

B) \(\text{|}x_1-x_2\text{|}=\sqrt{\left(x_1-x_2\right)^2}\) " phá căn bậc thì cũng phải phá trị tuyệt đối " " tự chức minh "

  \(B=\sqrt{x_1^2+x_2^2-2x_1x_2}\)   

\(x^2_1+x^2_2=\left(x_1+x_2\right)^2-2x_1x_2\)

ap dụng vi ét ta có  \(4\left(m-1\right)^2-2m^2+6m=4m^2-8m+4-2m^2+6m=2m^2-2m+4\)

\(-2x_1x_2=-2m^2+6m\)

\(B=\sqrt{2m^2-2m+4-2m^2+6m}=\sqrt{4m+4}=2\sqrt{m+1}\)

             "dk m >= -1"

Sửa Bài 3 nhé ! Lỗi kĩ thuật đánh máy )):

\(x^2-2mx-6=0\)

Phần b đằng sau .... Đạt GTNN  nhé, đánh máy lỗi quá.

4 tháng 5 2018

*\(\dfrac{x-1}{x+2}\)-\(\dfrac{x}{x+2}\)=\(\dfrac{5x-2}{4-x^2}\).ĐKXĐ: x\(\ne\pm2\)

<=>\(\dfrac{\left(x-1\right)\left(2-x\right)}{4-x^2}\)-\(\dfrac{x\left(2-x\right)}{4-x^2}\)=\(\dfrac{5x-2}{4-x^2}\)

=>2x-\(x^2\)-2+x-2x+\(x^2\)=5x-2

<=>x-2=5x-2

<=>x-5x=2-2

<=>-4x=0

<=> x = 0(TM)

Vậy phương trình có tập nghiệm là S={0}

4 tháng 5 2018

*(x+4)(5x+9)-x-4=0

<=>(x+4)(5x+9)-(x+4)=0

<=>(x+4)(5x+9-1)=0

<=>(x+4)(5x+8)=0

<=>x+4= 0 hoặc 5x+8=0

(+) x+4=0 (+)5x+8=0

<=>x=-4 <=>5x=-8

<=>x=\(\dfrac{-8}{5}\)

Vậy phương trình có tập nghiệm là S={\(-4;\dfrac{-8}{5}\)}

28 tháng 6 2020

Bổ sung thêm dữ kiện: Không có trận đấu tennis hòa

Một người đều chơi 9 trận với 9 người khác và không có trận hòa

Do đó \(x_1+y_1=x_2+y_2=....=x_{10}+y_{10}=9\)

Mà tổng số trận thắng bằng tổng số trận thua, do đó: \(x_1+x_2+...+x_{10}=y_1+y_2+y_3+...+y_{10}\)

Ta có \(\left(x_1^2+x_2^2+...+x_{10}^2\right)-\left(y_1^2+y_2^2+....+y_{10}^2\right)\)

\(=\left(x_1^2-y_1^2\right)+\left(x_2^2-y_2^2\right)+....+\left(x_{10}^2-y_{10}^2\right)=9\left(x_1-y_1\right)+9\left(x_1-y_2\right)+....+9\left(x_{10}-y_{10}\right)\)

\(=9\left(x_1-y_1+x_2-y_2+...+x_{10}-y_{10}\right)=9\left[\left(x_1+x_2+...+x_{10}\right)-\left(y_1+y_2+..+y_{10}\right)\right]=0\)

Vậy \(x_1^2+x_2^2+...+x_{10}^2=y_1^2+y_2^2+....+y_{10}^2\)

1 tháng 5 2018

a) \(\dfrac{\left(x+1\right)^2}{x^2-1}-\dfrac{\left(x-1\right)^2}{x^2-1}=\dfrac{16}{x^2-1}\)

=>\(\left(x+1\right)^2-\left(x-1\right)^2=16\)

=>\(x^2+2x+1-x^2+2x-1=16\)

=>4x=16=>x=4

b)\(\dfrac{12}{x^2-4}-\dfrac{x+1}{x-2}+\dfrac{x+7}{x+2}=0\)

=>\(\dfrac{12}{x^2-4}-\dfrac{\left(x+1\right)\left(x+2\right)}{x^2-4}+\dfrac{\left(x+7\right)\left(x-2\right)}{x^2-4}=0\)

=>\(12-\left(x+1\right)\left(x+2\right)+\left(x+7\right)\left(x-2\right)=0\)

=>\(12-x^2-3x-2+x^2+5x-14=0\)

=>2x-4=0=>2x=4=>x=2

c)\(\dfrac{12}{8+x^3}=1+\dfrac{1}{x+2}\)

=>\(\dfrac{12}{8+x^3}=\dfrac{x^3+8}{x^3+8}+\dfrac{x^2-2x+4}{x^3+8}\)

=>\(12=x^3+8+x^2-2x+4\)

=>\(x^3+x^2-2x=0\)

=>\(x^3-x+x^2-x=0\)

1 tháng 5 2018

c)=>\(x\left(x^2-1\right)+x\left(x-1\right)=0\)

=>\(x\left(x-1\right)\left(x+1\right)+x\left(x-1\right)=0\)

=>\(x\left(x-1\right)\left(x+2\right)=0\)

=>x=?

26 tháng 8 2018

a) \(\dfrac{5x-1}{3x+2}=\dfrac{5x-7}{3x-1}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\dfrac{5x-1}{3x+2}=\dfrac{5x-7}{3x-1}\)

\(=\dfrac{5x-1-5x+7}{3x+2-3x+1}\)

\(=\dfrac{-1+7}{2+1}\)

\(=\dfrac{6}{3}\)

\(=2\)

Với \(\dfrac{5x-1}{3x+2}=2\)

\(\Rightarrow5x-1=2\left(3x+2\right)\)

\(\Rightarrow5x-1-2\left(3x+2\right)=0\)

\(\Rightarrow5x-1-6x-4=0\)

\(\Rightarrow-x-5=0\)

\(\Rightarrow x=-5\)

5 tháng 4 2017

Bài 1:

a) Để (1) là pt bậc nhất thì \(m-2\ne0\Leftrightarrow m\ne2\)

---- hình như là còn đk m khác x+2 -------

b) Ta có ; (1) <=> (m-2)x = 2 (*)

7-4x = 2x -5 <=> 6x = 12 <=> x= 2 (**)

Từ (*) và (**) => m-2 = 1 <=> m=3

\(\dfrac{x+1}{x-1}+\dfrac{1}{x+1}=0\\ < =>\dfrac{\left(x+1\right)^2}{x^2-1}+\dfrac{x-1}{x^2-1}=0->\left(1\right)\\ ĐKXĐ:x^2-1\ne0< =>\left[{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.< =>\left[{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)

\(\left(1\right)=>\dfrac{\left(x+1\right)^2}{x^2-1}+\dfrac{x-1}{x^2-1}=0\\ =>\left(x+1\right)^2+\left(x-1\right)=0\\ < =>x^2+2x+1+x-1=0\\ < =>x^2+3x=0\\ < =>x\left(x+3\right)=0\\ =>\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=0\left(TMĐK\right)\\x=-3\left(TMĐK\right)\end{matrix}\right.\)

Vậy: Tập nghiệm của pt là S= {-3;0}

31 tháng 3 2017

\(\dfrac{x}{x-3}+\dfrac{6x}{9-x^2}=0\) (ĐKXĐ: \(x\ne\pm3\))

\(\Leftrightarrow\dfrac{-x\left(3+x\right)+6x}{9-x^2}=0\)

\(\Rightarrow-3x-x^2+6x=0\\ \Leftrightarrow x\left(-x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\-x+3=0\Leftrightarrow x=3\left(loại\right)\end{matrix}\right.\)

vậy phương trình có tập nghiệm là S={0}