K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2015

a) \(\Delta=4m^2-4\left(3m-4\right)=4m^2-12m+16=\left(2m-3\right)^2+7>0\)với mọi m=> pt (1) có nghiệm phân biệt với mọi m

b)áp dụng đ.lí Viét ta có: \(x_1+x_2=2m\)\(x_1.x_2=m^2+3m-4\)

\(x_1^2+x_2^2=\left(x1+x2\right)^2-2x1.x2=4m^2-2\left(m^2+3m-4\right)=4m^2-2m^2-6m+8\)

    \(=2\left(m^2+3m-4\right)=2\left[\left(m+\frac{3}{2}\right)^2-4-\frac{9}{4}\right]=2\left[\left(m+\frac{3}{2}\right)^2-\frac{25}{4}\right]\)

A đặt giá trị nhỏ nhất khi m = -3/2

19 tháng 4 2019

b/ x22 + x2 = x12 + x1

   Chuyển thành --> x1+ x1 - x2 -x2= 0 

                                x1-x22  ( Hằng đẳng thức) = (x1-x2)(x1+x2)

                                x1-x2=0

Có được (x1-x2)(x1+x2) -(x1+x2)=0

Thay vi - et vào ta có ( x1-x2) ( 2m) - ( 2m) =0  

  x1-x2=0

 ( x1-x2) =0

 (x1+x2)2 -4x1.x2 =0 

---> Thay vi-et vào được 4m2 -16=0 --> m= +2 và -2 ( xem điều kiện câu a để nhận hay loại)

8 tháng 5 2020

a) Vì \(x=-2\)là một nghiệm của phương trình

\(\Rightarrow\)Thay \(x=-2\)vào pt(1) ta được:

\(\left(-2\right)^2-2.m.\left(-2\right)+4=0\)\(\Leftrightarrow4+4m+4=0\)

\(\Leftrightarrow4m+8=0\)\(\Leftrightarrow4m=-8\)\(\Leftrightarrow m=-2\)

Vậy \(m=-2\)

20 tháng 3 2018

a, bn chỉ cần thay m =-2 vào pt là đc

b, thay x=-2 vào pt tac đc 4+6m+m^2-3m=0

m^2+3m+4=0

m=-1 và m=-4

với m=-1 thì x=2   với m=-4 thì vo nghiệm

vậy nghiệm còn lại là 2

20 tháng 3 2018

c bn sd đen ta ' là đc

d - bn viết hệ thức viet 

x1^2+x2^2=8

(X1+x2)^2-2x1.x2=8

- thay viet vào

25 tháng 7 2015

câu 1:

Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)

có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)

\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)

câu 2 mk k bik lm nha 

 

1 tháng 6 2017

chỗ \(x_2=1\)là dấu cộng hay trừ đấy

14 tháng 6 2015

b) \(\Delta=4-4\left(-m\right)=4+4m\). pt có nghiệm <=> \(\Delta\ge0\Leftrightarrow4+4m\ge0\Leftrightarrow m\ge-1\)

pt có nghiệm với mọi m>=-1 => áp dụng hệ thức vi ét ta có: \(x1+x2=-2\)\(x1.x2=-m\)

\(x1^4+x2^4=\left(x1+x2\right)^4-4x1^3x2-6x1^2x^2_2-4x1x2^3=16-2x1.x2\left(2x^2+3x1.x2+2x^2_2\right)\)

\(=16+2m\left[2\left(x1^2+2x1.x2+x2^2\right)-x1.x2\right]=16+2m\left[2\left(x1+x2\right)^2+m\right]=16+2m.4+2m^2=2m^2+8m+16\)

\(=2\left(m^2+4m+8\right)=2\left(m^2+4m+4+4\right)=2\left(m+2\right)^2+8\)

\(m\ge-1\Rightarrow m+2\ge1\Leftrightarrow2\left(m+2\right)^2+8\ge10\)=> Min P=10 <=> m=-1

22 tháng 10 2017

Sao ở khúc 16 + 2m [2 (x1 + x2) ^ 2 + m] = 16 + 2*4 +2m vậy?

26 tháng 4 2021

\(x^2-2mx+2m-3=0\)

\(\Delta^,_x=m^2-2m+3\)

\(=\left(m-1\right)^2+2\ge2>0;\forall m\)

\(\Rightarrow\)pt luôn có 2 nghiệm phân biệt \(x_1,x_2\)

Theo hệ thức Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=2m-3\end{cases}}\)

Ta có : \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)

\(\Leftrightarrow1-x_1^2-x_2^2+x_1^2x_2^2=-4\)

\(\Leftrightarrow1-\left(x_1^2+x_2^2\right)+\left(x_1x_2\right)^2=-4\)

\(\Leftrightarrow1-\left(x_1+x_2\right)^2+2x_1x_2+\left(x_1x_2\right)^2=-4\)

\(\Leftrightarrow1-4m^2+4m-6+\left(2m-3\right)^2=-4\)

\(\Leftrightarrow-8m+4=-4\)

\(\Leftrightarrow m=1\)

Vậy m=1 thì pt có 2 nghiệm phân biệt \(x_1,x_2\)thỏa mãn hệ thức  \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)