K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2018

Bài 2a) a + b = 9 ⇔ a = b - 9

a2 + b2 = 41 ⇔ ( b - 9)2 + b2 = 41 ⇔ 2b2 - 18b + 81 - 41 = 0

⇔ 2b2 - 18b + 40 = 0 ⇔ b2 - 9b + 20 = 0

⇔ b2 - 4b - 5b + 20 = 0

⇔ ( b - 4)( b - 5) = 0

⇔ b = 4 ; b = 5

KL.................................

b) a - b = 5 ⇔ a = b + 5

ab = ( b + 5)b = 36 ⇔ b2 + 5b - 36 = 0

⇔ b2 - 4b + 9b - 36 = 0

⇔ ( b - 4)( b + 9) = 0

⇔ b = 4 ; b = -9

c) Tương tự nhé bạn.

20 tháng 6 2018

2.

c/ \(\left(a+b\right)^2=a^2+2ab+b^2=61+2.30=121\)

d) Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1\cdot x_2=4m-3\end{matrix}\right.\)

Ta có: \(A=x_1^2+x_2^2+2\left(x_1+x_2\right)=\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)\)

\(\Rightarrow A=4m^2-8m+6-4m=4m^2-12m+6\)\(=4\left(m^2-3m+\frac{3}{2}\right)=4\left(m^2-2\cdot m\cdot\frac{3}{2}+\frac{9}{4}-\frac{3}{4}\right)=4\left(m-\frac{3}{2}\right)^2-3\ge-3\)

Dấu "=" xảy ra \(\Leftrightarrow m=\frac{3}{2}\)

30 tháng 6 2020

a) Thay m=3 vào pt ta được:

\(x^2+6x+9=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy x = 3 là nghiệm của pt khi m = 3

b)

Xét pt: \(x^2+2mx+4m-3=0\)

\(\Delta'=m^2-\left(4m-3\right)=m^2-4m+3=\left(m-3\right).\left(m-1\right)\)

để pt có nghiệm kép \(\Leftrightarrow\Delta'=0\Leftrightarrow\left(m-3\right).\left(m-1\right)=0\Leftrightarrow\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)

Vậy m \(\in\left\{1;3\right\}\) là giá trị cần tìm

21 tháng 3 2017

ta thấy pt luôn có no . Theo hệ thức Vi - ét ta có:

x1 + x2 = \(\dfrac{-b}{a}\) = 6

x1x2 = \(\dfrac{c}{a}\) = 1

a) Đặt A = x1\(\sqrt{x_1}\) + x2\(\sqrt{x_2}\) = \(\sqrt{x_1x_2}\)( \(\sqrt{x_1}\) + \(\sqrt{x_2}\) )

=> A2 = x1x2(x1 + 2\(\sqrt{x_1x_2}\) + x2)

=> A2 = 1(6 + 2) = 8

=> A = 2\(\sqrt{3}\)

b) bạn sai đề

31 tháng 7 2018

a) để phương trình có 1 nghiệm bằng 2

\(\Leftrightarrow m2^2-2.2-4m-1=0\Leftrightarrow-5=0\Rightarrow m\in\varnothing\)

b) để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\Delta'>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\1^2+m\left(4m+1\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\4m^2+m+1\end{matrix}\right.\) \(\Leftrightarrow m\ne0\)

áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2}{m}\\x_1x_2=\dfrac{-4m-1}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x_2=\dfrac{2}{m}\\2\left(\dfrac{2}{3m}\right)^2=\dfrac{-4m-1}{m}\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)

c) ta có : \(x_1< 2< x_2\Leftrightarrow\)\(x_1< mx_1x_2< x_2\Leftrightarrow\dfrac{1}{x_2}< m< \dfrac{1}{x_1}\)

\(\Leftrightarrow\dfrac{m}{1-\sqrt{4m^2+m+1}}< m< \dfrac{m}{1+\sqrt{4m^2+m+1}}\)

\(\Leftrightarrow\dfrac{m}{1-\sqrt{4m^2+m+1}}< m< \dfrac{m}{1+\sqrt{4m^2+m+1}}\)

\(\Leftrightarrow m< 0\) vậy \(m< 0\)

d) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2}{m}\\x_1x_2=\dfrac{-4m-1}{m}\end{matrix}\right.\)

ta có : \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{2}{m}.\left(\dfrac{m}{-4m-1}\right)=2\)

\(\Leftrightarrow\dfrac{2}{-4m-1}=2\Leftrightarrow m=\dfrac{-1}{2}\) vậy \(m=\dfrac{-1}{2}\)

24 tháng 1 2019

Không biết câu 1 đề là m2x hay là mx ta ? Bởi nếu đề như vậy đenta sẽ là bậc 4 khó thành bình phương lắm

Làm câu 2 trước vậy , câu 1 để sau

a, pt có nghiệm \(x=2-\sqrt{3}\)

\(\Rightarrow pt:\left(2-\sqrt{3}\right)^3+a\left(2-\sqrt{3}\right)^2+b\left(2-\sqrt{3}\right)-1=0\)

\(\Leftrightarrow26-15\sqrt{3}+7a-4a\sqrt{3}+2b-b\sqrt{3}-1=0\)

\(\Leftrightarrow\sqrt{3}\left(4a+b+15\right)=7a+2b+25\)

Vì VP là số hữu tỉ

=> VT là số hữu tỉ

Mà \(\sqrt{3}\)là số vô tỉ

=> 4a + b + 15 = 0

=> 7a + 2b + 25 = 0

Ta có hệ \(\hept{\begin{cases}4a+b=-15\\7a+2b=-25\end{cases}}\)

Dễ giải được \(\hept{\begin{cases}a=-5\\b=5\end{cases}}\)

b, Với a = -5 ; b = 5 ta có pt:

\(x^3-5x^2+5x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2-4x+1=0\left(1\right)\end{cases}}\)

Giả sử x1 = 1 là 1 nghiệm của pt ban đầu

          x2 ; x3 là 2 nghiệm của pt (1)

Theo Vi-ét \(\hept{\begin{cases}x_2+x_3=4\\x_2x_3=1\end{cases}}\)

Có: \(x_2^2+x_3^2=\left(x_2+x_3\right)^2-2x_2x_3=16-2=14\)

     \(x_2^3+x_3^3=\left(x_2+x_3\right)\left(x^2_2-x_2x_3+x_3^2\right)=4\left(14-1\right)=52\)

\(\Rightarrow\left(x_2^2+x_3^2\right)\left(x_2^3+x_3^3\right)=728\)

\(\Leftrightarrow x_2^5+x_3^5+x_2^2x_3^2\left(x_2+x_3\right)=728\)

\(\Leftrightarrow x^5_2+x_3^5+4=728\)

\(\Leftrightarrow x_2^5+x_3^5=724\)

  Có \(S=\frac{1}{x_1^5}+\frac{1}{x_2^5}+\frac{1}{x_3^5}\)

            \(=1+\frac{x_2^5+x_3^5}{\left(x_2x_3\right)^5}\)

            \(=1+724\)

             \(=725\)

Vậy .........

25 tháng 1 2019

Câu 1 đây , lừa người quá

Giả sử pt có 2 nghiệm x1 ; x2

Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=m^2\\x_1x_2=2m+2\end{cases}}\)

\(Do\text{ }m\inℕ^∗\Rightarrow\hept{\begin{cases}S=m^2>0\\P=2m+2>0\end{cases}\Rightarrow}x_1;x_2>0\)       

Lại có \(x_1+x_2=m^2\inℕ^∗\)

Mà x1 hoặc x2 nguyên

Nên suy ra \(x_1;x_2\inℕ^∗\)

Khi đó : \(\left(x_1-1\right)\left(x_2-1\right)\ge0\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1\ge0\)

\(\Leftrightarrow2m+2-m^2+1\ge0\)

\(\Leftrightarrow-1\le m\le3\)

Mà \(m\inℕ^∗\Rightarrow m\in\left\{1;2;3\right\}\)

Thử lại thấy m = 3 thỏa mãn

Vậy m = 3

24 tháng 5 2020

\(x^2+3x+m-3=0\)

Ta có \(\Delta=b^2-4ac\)

             \(=3^2-4.1.\left(m-3\right)\)

             \(=9-4m+12\)

             \(=21-4m\)

Đẻ pt có 2 nghiệm \(x_1;x_2\)\(\Leftrightarrow\Delta\ge0\Leftrightarrow21-4m\ge0\)

                                                  \(\Leftrightarrow x\le\frac{21}{4}\)

Áp dụng vi-ét ta có 

\(\hept{\begin{cases}x_1+x_2=-3\\x_1.x_2=m-3\end{cases}}\)

Ta có \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=5\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}=5\)

                                        \(\Leftrightarrow x_1^2+x_2^2=5x_1x_2\)

                                        \(\Leftrightarrow x_1^2+x_2^2-5x_1.x_2=0\)

                                       \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-5x_1x_2=0\)

                                        \(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x_2=0\)

                                       \(\Leftrightarrow\left(-3\right)^2-7\left(m-3\right)=0\)

                                        \(\Leftrightarrow9-7m+21=0\)

                                        \(\Leftrightarrow30-7m=0\)

                                        \(\Leftrightarrow7m=30\)

                                       \(\Leftrightarrow m=\frac{30}{7}\) (TM)

Vậy \(m=\frac{30}{7}\) thì thỏa mãn bài toán 

25 tháng 5 2020

vẽ hộ cái hình

3 tháng 6 2019

\(\Delta^`\ge0\)

\(\Leftrightarrow m^2-\left(m^2-2\right).2\ge0\)

\(\Leftrightarrow4-m^2\ge0\)

\(\Leftrightarrow4\ge m^2\)

\(\Leftrightarrow4\ge m^2\)

\(\Leftrightarrow-2\le m\le2\)

3 tháng 6 2019

Theo hệ thức Viet có:

\(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=\frac{m^2-2}{2}\end{cases}}\)

\(\Rightarrow A=\left|2x_1.x_2-x_1-x_2-4\right|=\left|m^2-m-6\right|=\left|\left(m-\frac{1}{2}\right)^2-6,25\right|\)

Có:

\(\left(m-\frac{1}{2}\right)^2\le\left(-2-\frac{1}{2}\right)^2=6,25\)

\(\Rightarrow A=\left|\left(m-\frac{1}{2}\right)^2-6,25\right|=6,25-\left(m-\frac{1}{2}\right)^2\le6,25\)

\(A=6,25\Leftrightarrow m=\frac{1}{2}\left(tm\right)\)

KL:..............................................

10 tháng 6 2016

Áp dụng hệ thức Vi-et, ta có : 

\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=-\left(2m+3\right)\end{cases}}\)

Đặt \(A=\left|\frac{x_1+x_2}{x_1-x_2}\right|\ge0\). A đạt giá trị nhỏ nhất \(\Leftrightarrow A^2\)đạt giá trị nhỏ nhất.

Ta có : \(A^2=\left(\frac{x_1+x_2}{x_1-x_2}\right)^2=\frac{\left(x_1+x_2\right)^2}{\left(x_1+x_2\right)^2-4x_1.x_2}=\frac{4\left(m+1\right)^2}{4\left(m+1\right)^2+4\left(2m+3\right)}=\frac{4\left(m+1\right)^2}{4m^2+16m+16}=\frac{\left(m+1\right)^2}{\left(m+2\right)^2}\ge0\)

Suy ra \(MinA^2=0\Leftrightarrow m=-1\) 

Vậy Min A = 0 \(\Leftrightarrow\)m = -1

10 tháng 6 2016

ở bài này phải chỉ ra \(\Delta'\)lớn hơn hoặc bằng 0 , hoặc chỉ ra a và c trái dấu nên phương trình có 2 nghiệm x1,x2 thì mới được áp dụng hệ thức Viét