Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2mx+2m-3=0\)
\(\Delta^,_x=m^2-2m+3\)
\(=\left(m-1\right)^2+2\ge2>0;\forall m\)
\(\Rightarrow\)pt luôn có 2 nghiệm phân biệt \(x_1,x_2\)
Theo hệ thức Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=2m-3\end{cases}}\)
Ta có : \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)
\(\Leftrightarrow1-x_1^2-x_2^2+x_1^2x_2^2=-4\)
\(\Leftrightarrow1-\left(x_1^2+x_2^2\right)+\left(x_1x_2\right)^2=-4\)
\(\Leftrightarrow1-\left(x_1+x_2\right)^2+2x_1x_2+\left(x_1x_2\right)^2=-4\)
\(\Leftrightarrow1-4m^2+4m-6+\left(2m-3\right)^2=-4\)
\(\Leftrightarrow-8m+4=-4\)
\(\Leftrightarrow m=1\)
Vậy m=1 thì pt có 2 nghiệm phân biệt \(x_1,x_2\)thỏa mãn hệ thức \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)
Cho tớ sửa đề làm cho nó dễ nhé == chứ x2^2 mà x1 thôi thì tớ ko có bt lm
Ta có : \(x^2+\left(-m+2\right)x-6=0\left(a=1;b=-m+2;c=-6\right)\)
Cái chỗ này là mk đổi dấu cho thuận một tí ko ko xét b đc )): lại 1 bước đi vạn dặm đau thì toang =))
\(\Delta=\left(-m+2\right)^2-4\left(-6\right)=m^2+4+24=m^2+28\) Vậy : Pt luôn có 2 nghiệm \(\forall x\)
Áp dụng hệ thức Vi et ta có : \(x_1+x_2=m-2;x_1x_2=-6\)
Theo bài ra ta có : \(x_2^2-x_1x_2+\left(m-2\right)x_1^2=16\)
\(\Leftrightarrow\left(x_1^2x_2^2\right)-x_1x_2+\left(m-2\right)=16\)
\(\Leftrightarrow\left(x_1x_2\right)^2-x_1x_2+m-2=16\)
\(\Leftrightarrow\left(-6\right)^2+6+m-2=16\)
\(\Leftrightarrow36+6+m-2=16\Leftrightarrow40+m-16=0\Leftrightarrow m=-24\)
a)Để \(PT\) có 2 nghiệm phân biệt khi \(\Delta'=\left(m-1\right)^2-\left(3-m\right)\)
\(=m^2-2m+1-3+m=m^2-m-2=\left(m-2\right)\left(m+1\right)>0\Leftrightarrow\orbr{\begin{cases}m< -1\\m>2\end{cases}}\)
Do đó để \(PT\)có 2 nghiệm phân biệt trái dấu khi \(\hept{\begin{cases}m\notin\left[-1;2\right]\\3-m< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\notin\left[-1;2\right]\left(1\right)\\m>3\left(TM\left(1\right)\right)\end{cases}}\)
Vậy \(m>3\) thì \(PT\) có 2 nghiệm trái dấu
b) Theo \(vi-et\: \) ta có :
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m-2\right)^2-2.\left(3-m\right)=4m^2-6m-2\)
Kết hợp với đề bài ta được : \(4m^2-6m-2\ge10\Leftrightarrow4m^2-6m-12\ge0\Leftrightarrow2m^2-3m-4\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x\le\frac{3-\sqrt{41}}{4}\\\frac{3+\sqrt{41}}{4}\le x\end{cases}}\)
a, \(x^2-2\left(m-1\right)x-3-m=0\left(a=1;b=-2m+2;c=-3-m\right)\)
Để phương trình có 2 nghiệm trái dấu thì \(ac< 0\)hay
\(-3-m< 0\Leftrightarrow m< -3\)
b, Theo hệ thức Vi et ta có : \(x_1+x_2=2m-2;x_1x_2=-3-m\)(tđz)
Theo bài ra ta có : \(x_1^2+x_2^2\ge10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)
Thay tđz bên trên vào ta đc : \(\left(2m-2\right)^2-2\left(-3-m\right)\ge10\)
\(\Leftrightarrow4m^2-4+6+2m\ge10\)
\(\Leftrightarrow4m^2+2+2m\ge10\Leftrightarrow3m^2-8+2m\ge0\)
Áp dụng HĐT đáng quên ra luôn =((
\(\Delta'=m^2-4m+3>0\Rightarrow\left[{}\begin{matrix}m< 1\\m>3\end{matrix}\right.\)
Đặt \(f\left(x\right)=x^2-2mx+4m-3\)
a/ Để \(x_2< 1< x_1\)
\(\Leftrightarrow f\left(1\right)< 0\Leftrightarrow1-2m+4m-3< 0\)
\(\Leftrightarrow2m< 2\Rightarrow m< 1\)
b/ Để \(x_1>2;x_2>2\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\\frac{x_1+x_2}{2}>2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2>4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m-3-4m+4>0\\2m>4\end{matrix}\right.\) \(\Rightarrow m>2\)
\(\Rightarrow m>3\)