\(m\) để pt (10 có 2 no
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

\(\Delta\)' = (m+1)2-2m+5 = m2 +2m +1 - 2m +5 =m2 +6 >0 nên pt đã cho luôn có 2 nghiệm x1,x2 phân biệt với mọi m .

Ta có : (x12 -2mx1+2m-1)(x22 -2mx2 +2m+1)<0 (*)

Vì x1,x2 là nghiệm của phương trình 1 nên ta có :

x12 -2mx1+2x1 +2m -5 = 0 => x12 -2mx1+2m-1 +2x1 -4 =0

=>x12 -2mx1+2m-1 = 4-2x1 Tương tự ta có : x22 -2mx2+2m-1 = 4-2x2

khi đó (*) trở thành : (4-2x1)(4-2x2) <0 =>16-8x2-8x1+4x1x2 < 0

<=> 16-8(x1+x2)+4x1x2 <0

vì phương trình đầu luôn có 2 nghiệm phân biệt với mọi m nên theo hệ thức viét ta có :\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)thay vào bất pt trên ta đc :

16-8.2(m-1)+4(2m-5)<0 => 16-16m+16+8m-20<0

12-8m<0 => m>\(\dfrac{3}{2}\)

Vậy m>\(\dfrac{3}{2}\)thì có 2 nghiệm x1 x2 thỏa mãn đề bài .

29 tháng 5 2019

1)Xét pt hoành độ của (P) và (d) ta có:

\(x^2=2x+2m\)

\(x^2-2x-2m=0\)

thay m=\(\frac{1}{3}\)

\(x^2-2x-2.\frac{1}{3}=0\)

\(x^2-2x-\frac{2}{3}=0\)

GPT ta được:m=\(\frac{3+\sqrt{15}}{3}\)

m=\(\frac{3-\sqrt{15}}{3}\)

b)Vì A(x1;x2) thuộc (P)=>\(y_1=x_1^2\)

B(x2;y2) thuộc (P)=>\(y_2=x_2^2\)

áp dụng viet đc:

\(x_1+x_2=2\)

\(x_1.x_2=-2m\)

Ta có:(1+y1)(1+y2)=5

\(\left(1+x_1^2\right)\left(1+x_2^2\right)=5\)

\(1+x_2^2+x_1^2+x_1^2x_2^2=5\)

1+(x1+x2)^2-2x1x2+x1^2x2^2=5

1+(2)^2-2.(-2m)+(-2m)^2=5

1+4+4m+4m^2-5=0

4m^2+4m=0

m=-1 và m=0

29 tháng 5 2019

2)Δ'=(-2m)^2-2.(2m^2-9)

=4m^2-4m^2+2

=2>0 ∀m

=>pt có 2 nghiệm phân biệt ∀ m

b)áp dụng viet:

x1+x2=4m/4=2m

x1.x2=2m^2-1/2

ta có :\(2x_1^2+4mx_2+2m^2-9< 0\)

\(2\left(x_1^2+2mx_2\right)+2m^2-9< 0\)

mà ta có x1+x2=2m

=>\(2\left(x_1^2+\left(x_1+x_2\right)x_2\right)+2m^2-9< 0\)

\(2\left(x_1^2+x_1x_2+x_2^2\right)+2m^2-9< 0\)

2{(x1^2+x2^2)+x1x2}+2m^2-9<0

2{x1+x2)^2-2x1x2+x1x2)+2m^2-9<0(cái này dùng phương pháp thêm bớt để tạo hàng đẳng thức nha bạn)

2{(x1+x2)^2-x1x2)+2m^2-9<0

còn lại bạn tự thay số rồi tính nha.Nhớ tick cho mk đóhaha

AH
Akai Haruma
Giáo viên
27 tháng 2 2017

Lời giải:

a) Để PT có hai nghiệm pb thì \(\Delta=(2m-3)^2-4(m^2-3m)>0\)

\(\Leftrightarrow 9>0\) (luôn đúng với mọi \(m\in\mathbb{R}\) )

Ta có PT tương đương \((x-m)(x-m+3)=0\)

\(\Rightarrow\left\{\begin{matrix}x_1=m-3\\x_2=m\end{matrix}\right.\). Để hai nghiệm thuộc khoảng \((1,6)\) thì :

\(1< m,m-3<6\Rightarrow 4< m<6\)

b) Từ phần a) suy ra hệ thức độc lập là \(x_1-x_2=-3\)

c) \(A=x_2^3-x_1^3=m^3-(m-3)^3=9m^2-27m+27=9(m-\frac{3}{2})^2+\frac{27}{4}\geq \frac{27}{4}\)

Do đó \(A_{\min}=\frac{27}{4}\Leftrightarrow m=\frac{3}{2}\)

8 tháng 5 2020

cho mik hỏi câu b chút, mik chưa hiểu tại sao1<m,m-3<6 lại suy ra đc 4<m<6 vậy ?

5 tháng 6 2018

1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0

Nếu x-5=0 suy ra x=5

Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0

Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0

Suy ra x=1 hoặc x=6.

4 tháng 7 2020

bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)

\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)

\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)

thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)

\(\left(++\right)< =>x-5=0< =>x=5\)

Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)