K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2020

\(pt:x^2-\left(2m-3\right)x-1=0\)

\(Thay\cdot m=1:pt\Leftrightarrow x^2+x-1=0\\ \Delta=1^2-4.\left(-1\right).1=5>0\\ \Rightarrow\left\{{}\begin{matrix}x_1=\frac{-1+\sqrt{5}}{2}\\x_2=\frac{-1-\sqrt{5}}{2}\end{matrix}\right.\)

21 tháng 4 2020

Cảm ơn bạn nha

5 tháng 6 2020

Bài 1 : a ) Tại m = \(\frac{1}{2}\)ta được phương trình mới là :

x2 - 7x = 0

<=> x ( x - 7 ) = 0

<=> x = 0 hoặc x - 7 = 0

<=> x = 0 hoặc x = 7

c) x2 - 2( m + 3 )x + 2m - 1 = 0 ( a = 1 ; b = -2m - 6 ; c = 2m - 1 )

Δ = ( - 2m - 6 )2 - 4 . 1 . ( 2m - 1 )

= 4m2 + 24m + 36

= 4 ( m2 + 6m + 9 )

= 4 ( m + 3 )2 ≥ 0 , với ∀m

30 tháng 5 2020

a, Thay \(m=-3\)vào phương trình ta có :

\(x^2+x\left(m-1\right)-\left(2m+3\right)=0\)

\(< =>x^2-4x+3=0\)

Ta có : \(\Delta=\left(-4\right)^2-4.3=16-12=4;\sqrt{\Delta}=\sqrt{4}=2\)

\(x_1=\frac{4+2}{2}=3\)\(;\)\(x_2=\frac{4-2}{2}=1\)

nên tập nghiệm của phương trình trên là \(\left\{1;3\right\}\)

b, Ta có : \(\Delta=\left(m-1\right)^2+4\left(2m+3\right)\ge0\)

\(=m^2-2m+1+8m+12\ge0\)

\(=m\left(m-2\right)+8\left(m-2\right)+29\ge0\)

\(=\left(m+8\right)\left(m-2\right)+29\ge0\)

\(=m^2+6m+13\ge0\)( đến đây thì chịu r :) )

c, theo vi ét ta có \(x_1+x_2=-\frac{b}{a}\)

\(< =>x_1+x_2=\frac{-m+1}{2}=7\)

\(< =>-m+1=14\)

\(< =>-m=13< =>m=-13\)

NV
17 tháng 5 2020

a/ Bạn tự giải

b/ Đặt \(x^2=t\ge0\)

\(\Rightarrow t^2-2\left(m+1\right)t+2m+1=0\) (1)

Để pt đã cho có 4 nghiệm pb

\(\Leftrightarrow\) (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m+1\right)^2-2m-1>0\\x_1+x_2=2\left(m+1\right)>0\\x_1x_2=2m+1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m>-\frac{1}{2}\end{matrix}\right.\)

A) delta=(4m-2)^2-4×4m^2

=16m^2-8m+4-16m^2

=-8m+4

để pt có hai nghiệm pb thì -8m+4>0

Hay m<1/2

B để ptvn thì -8m+4<0

hay m>1/2

30 tháng 12 2019

PT : \(x^2-\left(2m-3\right)x+m^2-3m=0\)

a ) Làm tổng luôn ta chỉ cần thay m = 1 là xong

b ) \(\Delta_{\left(x\right)}=\left(2m-3\right)^2-4\left(m^2-3m\right)=4m^2-12m+9-4m^2+12m=9\)\(>0\forall m\in R\Rightarrowđpcm\)

c ) \(\hept{\begin{cases}x_1=m-3;x_2=m\\m>m-3\forall m\in R\\1< x_1< x_2< 6\end{cases}}\)  quay lại a ) m=1 \(\Rightarrow\hept{\begin{cases}x_1=-2\\x_2=1\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=1\\x_2=-2\end{cases}}\)

      \(4< m< 6\)

1) Thay m=1 vào phương trình, ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

Vậy: Khi m=1 thì phương trình có nghiệm duy nhất là x=1

1) Bạn tự làm

2) Ta có: \(\Delta'=\left(m-1\right)^2\ge0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\) 

a) Ta có: \(x_1+x_2=-1\) \(\Rightarrow2m=-1\) \(\Leftrightarrow m=-\dfrac{1}{2}\)

   Vậy ...

b) Ta có: \(x_1^2+x_2^2=13\) \(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)

            \(\Rightarrow4m^2-4m-11=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{13}}{2}\)

  Vậy ...