\(x^2-2\left(m+1\right)x+m^2-2=0\). Tìm m để:

1) Pt có 2 nghiệm trái dấu...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 4 2018

Lời giải:

Để pt có hai nghiệm thì: \(\Delta'=(m+1)^2-(m^2-2)>0\)

\(\Leftrightarrow 2m+3>0\Leftrightarrow m> \frac{-3}{2}(*)\)

Áp dụng định lý Viete có: \(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=m^2-2\end{matrix}\right.\)

1)

Để pt có hai nghiệm trái dấu và nghiệm âm có trị tuyệt đối lớn hơn nghiệm dương thì:

\(\left\{\begin{matrix} x_1+x_2<0\\ x_1x_2< 0\end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} 2(m+1)<0\\ m^2-2< 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m< -1\\ -\sqrt{2}< m< \sqrt{2}\end{matrix}\right.\). Kết hợp với $(*)$ suy ra \(-\sqrt{2}< m< -1\)

2)

\(2x_1-x_2=-1\Leftrightarrow 3x_1-(x_1+x_2)=-1\)

\(\Leftrightarrow 3x_1-2(m+1)=-1\Leftrightarrow x_1=\frac{2m+1}{3}\)

\(\Rightarrow x_2=\frac{4m+5}{3}\)

Khi đó: \(m^2-2=x_1x_2=\frac{2m+1}{3}.\frac{4m+5}{3}\)

Giải pt ta dễ dàng suy ra \(m=7\pm 6\sqrt{2}\)

Kết hợp với $(*)$ thì \(m=7\pm 6\sqrt{2}\)

25 tháng 5 2019

Cho Nguyên hỏi là tại sao khi phương trình có nghiệm âm có giá trị tuyệt đối lớn hơn thì ta phải xét S lớn hơn 0 vậy rất thắc mắc chỗ đó!

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0
17 tháng 3 2019

\(\Delta=\left[-\left(m-1\right)\right]^2-4\left(m^2-3m\right)=m^2-2m+1-4m^2+12m=-3m^2+10m+1\)

Để pt có 2 nghiệm trái dấu thì 

\(\hept{\begin{cases}\Delta>0\\P< 0\end{cases}\Leftrightarrow\hept{\begin{cases}-3m^2+10m+1>0\\x_1+x_2=m-1< 0\end{cases}\Rightarrow}\hept{\begin{cases}m>\frac{5-2\sqrt{7}}{3}\\m< 1\end{cases}}}\)

16 tháng 4 2020

câu b khó hơn đó :v thử r, nó ra bậc 3 lận

15 tháng 4 2020

Bài 2 :

a,- Để phương trình có 2 nghiệm phân biệt thì : \(\Delta>0\)

<=> \(m^2-4.1.\left(2m-4\right)>0\)

<=> \(m^2-8m+16>0\)

<=> \(\left(m-4\right)^2>0\)

<=> \(m-4>0\)

<=> \(m>4\)

- Nên phương trình có 2 nghiệm phân biệt là :

\(x_1=\frac{m+\sqrt{m-4}}{2},x_2=\frac{m-\sqrt{m-4}}{2}\)

a, Ta có : \(x^2_1+x_2^2=13\)

=> \(\left(\frac{m+\sqrt{m-4}}{2}\right)^2+\left(\frac{m-\sqrt{m-4}}{2}\right)^2=13\)

=> \(\left(m+\sqrt{m-4}\right)^2+\left(m-\sqrt{m-4}\right)^2=52\)

=> \(m^2+2m\sqrt{m-4}+m-4+m^2-2m\sqrt{m-4}+m-4-52=0\)

=> \(2m^2+2m-60=0\)

=> \(m^2+m-30=0\)

=> \(m^2+\frac{m.2.1}{2}+\frac{1}{4}=30+\frac{1}{4}=\frac{121}{4}\)

=> \(\left(m+\frac{1}{2}\right)^2=\frac{121}{4}\)

=> \(\left[{}\begin{matrix}m=\sqrt{\frac{121}{4}}-\frac{1}{2}=5\left(TM\right)\\m=-\sqrt{\frac{121}{4}}-\frac{1}{2}=-6\left(KTM\right)\end{matrix}\right.\)

Vậy m có giá trị bằng 5 thỏa mãn điều kiện .

b, Làm tương tự nha .

30 tháng 3 2017

x2-2(m+2)x+m+1=0 (1)

a/ Xét phương trình (1) có \(\Delta\)=4(m+2)2 - 4.1.(m+1)

= 4m2+12m+12

= (2m+3)2 + 3 >0 với mọi m

Do đó phương trình có 2 nghiệm phân biệt với mọi m

Áp dụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1.x_2=m+1\end{matrix}\right.\)

Ta có: x1,x2 trái dấu \(\Leftrightarrow\) x1.x2<0 \(\Leftrightarrow\) m+1<0 \(\Leftrightarrow\) m<-1

Vậy để phương trình có 2 nghiệm trái dấu thì m<-1

b/ Theo đề bài ta có:

x1(1-2x2) +x2(1-2x1)=m2

\(\Rightarrow\) x1-2x1x2+x2-2x1x2=m2

\(\Rightarrow\)(x1+x2)-4x1x2=m2

\(\Leftrightarrow\)2m+4-4(m+1)=m2

\(\Leftrightarrow\)-m2-2m=0

\(\Leftrightarrow-m\left(m+2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}-m=0\\m+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)

Vậy để x1(1-2x2)+x2(1-2x1)=m2 thì m=0 hoặc m=-2

25 tháng 3 2018

\(x^2-2\left(m-1\right)x-3-m=0\)  \(\left(1\right)\)

từ \(\left(1\right)\)  ta có \(\Delta'=\left[-\left(m-1\right)\right]^2-\left(-3-m\right)\)

\(\Delta'=m^2-2m+1+m+3\)

\(\Delta'=m^2-m+4\)

25 tháng 3 2018

Câu b, nx cơ bn ơi !

10 tháng 8 2018

dùng phương pháp Vi-ét ko hoàn toàn

(mình đăng lên youtube rồi đấy)

10 tháng 8 2018

xem rồi giùm mk nha

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

 Theo đ

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

Theo đề bài thì

\(x^2_2+x^2_1\ge10\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)

Làm tiếp sẽ ra. Câu còn lại tương tự