Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left[-\left(m-1\right)\right]^2-4\left(m^2-3m\right)=m^2-2m+1-4m^2+12m=-3m^2+10m+1\)
Để pt có 2 nghiệm trái dấu thì
\(\hept{\begin{cases}\Delta>0\\P< 0\end{cases}\Leftrightarrow\hept{\begin{cases}-3m^2+10m+1>0\\x_1+x_2=m-1< 0\end{cases}\Rightarrow}\hept{\begin{cases}m>\frac{5-2\sqrt{7}}{3}\\m< 1\end{cases}}}\)
Bài 2 :
a,- Để phương trình có 2 nghiệm phân biệt thì : \(\Delta>0\)
<=> \(m^2-4.1.\left(2m-4\right)>0\)
<=> \(m^2-8m+16>0\)
<=> \(\left(m-4\right)^2>0\)
<=> \(m-4>0\)
<=> \(m>4\)
- Nên phương trình có 2 nghiệm phân biệt là :
\(x_1=\frac{m+\sqrt{m-4}}{2},x_2=\frac{m-\sqrt{m-4}}{2}\)
a, Ta có : \(x^2_1+x_2^2=13\)
=> \(\left(\frac{m+\sqrt{m-4}}{2}\right)^2+\left(\frac{m-\sqrt{m-4}}{2}\right)^2=13\)
=> \(\left(m+\sqrt{m-4}\right)^2+\left(m-\sqrt{m-4}\right)^2=52\)
=> \(m^2+2m\sqrt{m-4}+m-4+m^2-2m\sqrt{m-4}+m-4-52=0\)
=> \(2m^2+2m-60=0\)
=> \(m^2+m-30=0\)
=> \(m^2+\frac{m.2.1}{2}+\frac{1}{4}=30+\frac{1}{4}=\frac{121}{4}\)
=> \(\left(m+\frac{1}{2}\right)^2=\frac{121}{4}\)
=> \(\left[{}\begin{matrix}m=\sqrt{\frac{121}{4}}-\frac{1}{2}=5\left(TM\right)\\m=-\sqrt{\frac{121}{4}}-\frac{1}{2}=-6\left(KTM\right)\end{matrix}\right.\)
Vậy m có giá trị bằng 5 thỏa mãn điều kiện .
b, Làm tương tự nha .
x2-2(m+2)x+m+1=0 (1)
a/ Xét phương trình (1) có \(\Delta\)=4(m+2)2 - 4.1.(m+1)
= 4m2+12m+12
= (2m+3)2 + 3 >0 với mọi m
Do đó phương trình có 2 nghiệm phân biệt với mọi m
Áp dụng hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1.x_2=m+1\end{matrix}\right.\)
Ta có: x1,x2 trái dấu \(\Leftrightarrow\) x1.x2<0 \(\Leftrightarrow\) m+1<0 \(\Leftrightarrow\) m<-1
Vậy để phương trình có 2 nghiệm trái dấu thì m<-1
b/ Theo đề bài ta có:
x1(1-2x2) +x2(1-2x1)=m2
\(\Rightarrow\) x1-2x1x2+x2-2x1x2=m2
\(\Rightarrow\)(x1+x2)-4x1x2=m2
\(\Leftrightarrow\)2m+4-4(m+1)=m2
\(\Leftrightarrow\)-m2-2m=0
\(\Leftrightarrow-m\left(m+2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}-m=0\\m+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)
Vậy để x1(1-2x2)+x2(1-2x1)=m2 thì m=0 hoặc m=-2
\(x^2-2\left(m-1\right)x-3-m=0\) \(\left(1\right)\)
từ \(\left(1\right)\) ta có \(\Delta'=\left[-\left(m-1\right)\right]^2-\left(-3-m\right)\)
\(\Delta'=m^2-2m+1+m+3\)
\(\Delta'=m^2-m+4\)
dùng phương pháp Vi-ét ko hoàn toàn
(mình đăng lên youtube rồi đấy)
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đ
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đề bài thì
\(x^2_2+x^2_1\ge10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)
Làm tiếp sẽ ra. Câu còn lại tương tự
Lời giải:
Để pt có hai nghiệm thì: \(\Delta'=(m+1)^2-(m^2-2)>0\)
\(\Leftrightarrow 2m+3>0\Leftrightarrow m> \frac{-3}{2}(*)\)
Áp dụng định lý Viete có: \(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=m^2-2\end{matrix}\right.\)
1)
Để pt có hai nghiệm trái dấu và nghiệm âm có trị tuyệt đối lớn hơn nghiệm dương thì:
\(\left\{\begin{matrix} x_1+x_2<0\\ x_1x_2< 0\end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} 2(m+1)<0\\ m^2-2< 0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m< -1\\ -\sqrt{2}< m< \sqrt{2}\end{matrix}\right.\). Kết hợp với $(*)$ suy ra \(-\sqrt{2}< m< -1\)
2)
\(2x_1-x_2=-1\Leftrightarrow 3x_1-(x_1+x_2)=-1\)
\(\Leftrightarrow 3x_1-2(m+1)=-1\Leftrightarrow x_1=\frac{2m+1}{3}\)
\(\Rightarrow x_2=\frac{4m+5}{3}\)
Khi đó: \(m^2-2=x_1x_2=\frac{2m+1}{3}.\frac{4m+5}{3}\)
Giải pt ta dễ dàng suy ra \(m=7\pm 6\sqrt{2}\)
Kết hợp với $(*)$ thì \(m=7\pm 6\sqrt{2}\)
Cho Nguyên hỏi là tại sao khi phương trình có nghiệm âm có giá trị tuyệt đối lớn hơn thì ta phải xét S lớn hơn 0 vậy rất thắc mắc chỗ đó!