Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta'=\left[-\left(m+1\right)\right]^2-4m+m^2\)
\(\Delta'=m^2+2m+1+m^2-4m=2m^2-2m+1\)
\(\Delta'=2\left(m-\frac{1}{2}\right)^2+\frac{1}{2}>0\)
=> pt luôn có 2 nghiệm phân biệt
b) Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m-m^2\end{cases}}\)
Theo bài ra, ta có: A = |x1 - x2|
A2 = (x1 - x2)2 = (x1 + x2)2 - 4x1x2
A2 = [2(m + 1)]2 - 4(4m - m2)
A2 = 4m2 + 8m + 4 - 8m + 4m2 = 8m2 + 4 \(\ge\)4 với mọi m
Dấu "=" xảy ra <=> m = 0
Vậy MinA = 4 khi m = 0
a) Xét \(\Delta'=\left(m+1\right)^2-\left(4m-m^2\right)=2m^2-2m+1=m^2+\left(m-1\right)^2>0\)với mọi m
Vậy pt trên luôn có 2 nghiệm phân biệt với mọi m
b) Gọi x1 ; x2 là 2 nghiệm của pt trên . Theo hệ thức Viet , ta có :
\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m-m^2\end{cases}}\)
Xét \(A^2=\left|x_1-x_2\right|^2=\left(x_1+x_2\right)^2-4x_1x_2=4\left(m+1\right)^2-4\left(4m-m^2\right)\)
\(=8m^2-8m+4=2\left(4m^2-4m+1\right)+2=2\left(2m-1\right)^2+2\ge2\)
Dấu " = " xảy ra khi 2m - 1 = 0
Vậy \(A^2\ge2\Leftrightarrow A=\left|x_1-x_2\right|\ge\sqrt{2}\)
Dấu " = " xảy ra khi \(m=\frac{1}{2}\)
Do đó minA \(=\sqrt{2}\)khi \(m=\frac{1}{2}\)
a) Ta có : \(\Delta'=\left(m+1\right)^2-\left(m^2+4m+3\right)=-2m-2\)
Để pt có 2 nghiệm phân biêt \(\Leftrightarrow\Delta'>0\Leftrightarrow m< -1\)
b) Theo hệ thức Viet \(\hept{\begin{cases}S=x_1+x_2=-2\left(m+1\right)\\P=x_1x_2=m^2+4m+3\end{cases}}\)
\(\Rightarrow A=m^2+4m+3+4\left(m+1\right)=m^2+4m+3+4m+4=m^2+8m+7\)
c) Ta có : \(A=m^2+8m+7=m^2+8m+16-9=\left(m+4\right)^2-9\ge-9\)
Dấu " = " xảy ra khi <=> m = -4 ( tm m < -1 )
Vậy minA = -9 tại m = -4
xét pt \(x^2-2x+m-1=0\) \(\left(1\right)\)
từ (1) ta có \(\Delta'=\left(-1\right)^2-m+1\)
\(\Delta'=1-m+1\)
\(\Delta'=2-m\)
để pt (1) co 2 nghiệm phân biệt \(x_1,x_2\)thì \(\Delta'>0\Leftrightarrow2-m>0\)
\(\Leftrightarrow m< 2\)
theo định lí vi - ét \(\hept{\begin{cases}x_1+x_2=2\left(1\right)\\x_1.x_2=m-1\left(2\right)\end{cases}}\)
theo câu a) \(x_1=2x_2\Leftrightarrow x_1-2x_2=0\) \(\left(3\right)\)
từ \(\left(1\right)\) và \(\left(3\right)\) ta có hpt
\(\hept{\begin{cases}x_1+x_2=2\\x_1-2x_2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x_2=2\\x_1+x_2=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_2=\frac{2}{3}\\x_1=\frac{4}{3}\end{cases}}\left(4\right)\)
thay \(\left(3\right)\) và (2) ta có \(x_1.x_2=m-1\)
\(\Leftrightarrow m-1=\frac{4}{3}.\frac{2}{3}\)
\(\Leftrightarrow m-1=\frac{8}{9}\)
\(\Leftrightarrow m=\frac{17}{9}\) ( TM \(m< 2\) )
vậy \(m=\frac{17}{9}\) là giá trị cần tìm
a) theo bài ra \(\left|x_1-x_2\right|=4\)
\(\Leftrightarrow\left(\left|x_1-x_2\right|\right)^2=16\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4\left(x_1.x_2\right)-16=0\)
\(\Leftrightarrow2^2-4.\left(m-1\right)-16=0\)
\(\Leftrightarrow-12-4\left(m-1\right)=0\)
\(\Leftrightarrow-4\left(m-1\right)=12\)
\(\Leftrightarrow m-1=-3\)
\(\Leftrightarrow m=-2\) ( TM \(m< 2\))
vậy....
b) \(\left|x_1\right|+\left|x_2\right|=4\)
\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=16\)
\(\Leftrightarrow x^2_1+2\left|x_1\right|.\left|x_2\right|+x^2_2=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2+2\left|x_1.x_2\right|=16\)
\(\Leftrightarrow2^2-2\left(m-1\right)+2\left|m-1\right|=16\) \(\left(#\right)\)
+) Nếu \(m-1\ge0\Leftrightarrow m\ge1\) thì pt \(\left(#\right)\)
\(\Leftrightarrow4-2m+2+2m-2=16\)
\(\Leftrightarrow0m=16-4\Leftrightarrow0m=12\) ( pt này vô nghiệm )
+) nếu \(m-1< 0\Leftrightarrow m< 1\) thì pt \(\left(#\right)\)
\(\Leftrightarrow4-2m+2-2m+2=16\)
\(\Leftrightarrow-4m=16-8\)
\(\Leftrightarrow-4m=8\)
\(\Leftrightarrow m=-2\) ( TM \(m< 1\) )
vậy \(m=-2\) là giá trị cần tìm
\(\Delta=\left(m-2\right)^2\ge0\forall x\Rightarrow PT\) luôn có 2 nghiệm \(x1;x2\)
\(P=\left(x_1+x_2\right)^2-2x_1x_2-4\left(x_1+x_2\right)\)
Theo viet ta có : \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=m-1\end{matrix}\right.\) thay vào \(P:P=m^2-2\left(m-1\right)+4m=m^2+2m+2\)
\(=\left(m+1\right)^2+1\ge1\) Dấu "=" xảy ra \(\Leftrightarrow m=-1\)
xét pt \(x^2-mx+m-1=0\) \(\left(1\right)\)
xó \(\Delta=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>0\forall m\ne2\)
\(\Rightarrow pt\) (1) có 2 nghiệm phân biệt \(x_1,x_2\forall m\ne2\)
ta có vi -ét \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)
theo bài ra \(\left|x_1\right|+\left|x_2\right|=6\)
\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=36\)
\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=36\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=36\)
\(\Leftrightarrow m^2-2\left(m-1\right)+2\left|m-1\right|=36\)
nếu \(m-1< 0\Rightarrow m^2-4m-32=0\) ta tìm được \(m=8\left(loai\right)\); \(m=-4\left(TM\right)\)
nếu \(m-1\ge0\Rightarrow m^2=36\Rightarrow m=6\left(TM\right);m=-6\left(loai\right)\)
vậy \(m=-4;m=6\) là các giá trị cần tìm
dùng phương pháp Vi-ét ko hoàn toàn
(mình đăng lên youtube rồi đấy)
Điều kiên có nghiệm của phương trình : \(\Delta'=9-m\ge0\Leftrightarrow m\le9\)
Theo hệ thức Vi-et , ta có : \(\begin{cases}x_1+x_2=6\\x_1.x_2=m\end{cases}\)
Biến đổi : \(\left(x_1^2+1\right)\left(x_2^2+1\right)=36\)
\(\Leftrightarrow\left(x_1.x_2\right)^2+\left(x_1+x_2\right)^2-2x_1.x_2-35=0\)
\(\Leftrightarrow m^2+36-2m-35=0\)
\(\Leftrightarrow\left(m-1\right)^2=0\Leftrightarrow m=1\) (thỏa mãn)
Vậy m = 1 thỏa mãn đề bài.
a)
\(x^2-2\left(m+1\right)x+4m-m^2=0\)
Ta có : (a = 1 ; b = 2(m+1) ; b' = m + 1 ; c = 4m-m2 )
\(\Delta'=b'^2-ac\)
= \(\left(m+1\right)^2-1.\left(4m-m^2\right)\)
= m2 + 2m + 1 -4m +m2
= 2m2 -2m + 1
= 2 ( m-1)2 > 0 (phuong trinh luon co 2 nghien pb \(\forall m\)
a) có \(\Delta'=\left[-\left(m+1\right)\right]^2-4m+m^2\)
\(=m^2+2m+1-4m+m^2\)
\(=2m^2-2m+1\)
\(=2\left(m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+1\right)\)
\(=2\left(m-\frac{1}{2}\right)^2+\frac{1}{2}>0\forall m\)
\(\Rightarrow pt\) trên luôn có 2 nghiệm pb \(\forall m\)
b) ta có vi - ét \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=4m-m^2\end{cases}}\)
theo bài ra \(A=\left|x_1-x_2\right|\)
\(\Leftrightarrow A^2=\left(x_1-x_2\right)^2\)
\(\Leftrightarrow A^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(\Leftrightarrow A^2=4m^2+8m+4+4m^2-16m\)
\(\Leftrightarrow A^2=8m^2-8m+4\)
\(\Leftrightarrow A^2=8\left(m^2-m+\frac{1}{2}\right)\)
\(\Leftrightarrow A^2=8\left(m-\frac{1}{2}\right)^2+2\ge2\)
dấu "=" xảy ra \(\Leftrightarrow m-\frac{1}{2}=0\Leftrightarrow m=\frac{1}{2}\)
vậy MIN A^2 = \(2\Leftrightarrow m=\frac{1}{2}\)